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Maximum Likelihood Estimation
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x*: state most consistent with observations
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Maximum Likelihood Estimation
Using 

Bayes' Rule

Independence, 

We can further simplify 
the task
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Gaussian Assumption
Measurements affected by Gaussian noise



Gaussian Assumption
Measurements affected by Gaussian noise
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Gaussian Assumption
Through Gaussian assumption
Maximization becomes minimization
Product turns into sum



Gauss Method Overview
Iterative minimization of

Each iteration refines the current estimate by 
applying a perturbation

Perturbation obtained by minimizing a 
quadratic approximation of the problem in  



Linearization
The quadratic approximation is obtained by 
linearizing the error functions around  

...expanding the products

...and grouping the terms



Quadratic form
Find the        that minimizes the quadratic 
approximation of the objective function

Find        that nulls the derivative of quadratic 
form



Algorithm (one Iteration)
Clear H and b

For each measurement, update h and b

Update the estimate with the perturbation



Methodology
Identify the state space X

 Qualify the domain
 Find a locally Euclidean parameterization

Identify the measurement space(s) Z
 Qualify the domain
 Find a locally Euclidean parameterization

Identify the prediction functions h(x)



Gauss-Newton in SLAM
Typical problems where GN is used

 Calibration
 Registration

 Cloud to Cloud (ICP)
 Image to Cloud (Posit)

 Global Optimization
 Pose-SLAM
 Bundle Adjustment

Warning 
 Data association is assumed to be known known
 Gauss-Newton alone is not sufficient to solve a full 
problem

 One needs a strategy to compute data association
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Cyrill and Michael's Talks



Example ICP Optimization in 3D
Given a set of points in the world frame



Example ICP Optimization in 3D
A set of 3D measurements in the robot frame



Example ICP Optimization in 3D
Roughly known correspondences



Example ICP Optimization in 3D
We want to find a transform that minimizes 
distance between corresponding points



Example ICP Optimization in 3D
Such a transform will be the pose of world w.r.t. 
robot

Note: we can also estimate robot w.r.t world, 
but it leads to longer calculations



ICP: State and Measurements
State

Measurements



On Rotation Matrices
A rotation is obtained by composing the 
rotations along x-y-z

Small lookup of rotations (and derivatives)



ICP: Jacobian



ICP: Octave Code
function [e,J]=errorAndJacobian(x,p,z)
  rx=Rx(x(4)); #rotation matrices at x
  ry=Ry(x(5));
  rz=Rz(x(6));
  rx_p=Rx_prime(x(4)); #derivatives at x
  ry_p=Ry_prime(x(5));
  rz_p=Rz_prime(x(6));
     t=x(1:3);
  
  z_hat=rx*ry*rz*p+t; #prediction
  e=z_hat­z;          #error
  J=zeros(3,6);       #jacobian
  J(1:3,1:3)=eye(3);  #translational part of jacobian

    
  J(1:3,4)=rx_p*ry*rz*p; #de/dax
  J(1:3,5)=rx*ry_p*rz*p; #de/day
  J(1:3,6)=rx*ry*rz_p*p; #de/daz
endfunction



ICP: Octave Code
function [x, chi_stats]=doICP(x_guess, P, Z, num_iterations)
  x=x_guess;
  chi_stats=zeros(1,num_iterations); #ignore this for now
  for (iteration=1:num_iterations)
    H=zeros(6,6);
    b=zeros(6,1);
    chi=0;
    for (i=1:size(P,2))
      [e,J] = errorAndJacobian(x, P(:,i), Z(:,i));
      H+=J'*J;
      b+=J'*e;
      chi+=e'*e;
    endfor
    chi_stats(iteration)=chi;
    dx=­H\b;
    x+=dx;
  endfor
endfunction



Testing, good initial guess
Spawn a set of random 
points in 3D

Define a location of the 
robot

Compute synthetic 
measurements from 
that location

Set the a point close to 
the true location as 
initial guess

Run ICP and plot the 
evolution of the error

When started from a 
good guess, the 
system converges 
nicely



Testing, bad initial guess
Spawn a set of 
random points in 3D

Define a location of 
the robot

Compute synthetic 
measurements from 
that location

Set the origin as initial 
guess

Run ICP and plot the 
evolution of the error

If the guess is poor, the 
system might take long 
to converge

The error might 
increase



Non-Euclidean Spaces
In SLAM we often encounter spaces that have a 
non-euclidean topology

 E.g.: 2D angles



Non-Euclidean Spaces
In such cases we commonly operate on a locally 
Euclidean parameterization

 E.g. we map the angles in the interval [-pi:pi]



Non-Euclidean Spaces
We can then measure distances in the 
Euclidean mapping through a regular 
subtraction
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Non-Euclidean Spaces
We can then measure distances in the 
Euclidean mapping through a regular 
subtraction

The direction of the distance is the opposite!!!



Non-Euclidean Spaces
Idea: when computing the distances, build the 
Euclidean mapping in the neighborhood of one 
of the points: the chart around X0.

The direction of the distance is the opposite!!!



Computing Differences
      : start point, on manifold

      : end point, on manifold

      : difference, on chart

Compute a chart around
Compute the location of       on the chart
Measure the difference between points in the 
chart

Chart is Euclidean:
Use an operator 

Hertzberg, Wagner, Frese and Schroeder 2011 



Applying Differences
      : start point, on manifold

      : difference on chart

      : end point, on manifold reachable from  

         by moving of        on the chart 

Compute a chart around 
Move of         in the chart and go back to the 
manifold

Encapsulate the operation with an operator



Algorithm (One Iteration)
Clear H and b

For each measurement

Compute and apply the perturbation



Gauss in Non Euclidean Spaces
Beware of the + and – operators

Error function

Taylor expansion

Increments



Algorithm (One Iteration)
Clear H and b

For each measurement

Compute and apply the perturbation



Methodology
State space X

 Qualify the Domain
 Define an Euclidean parameterization for the perturbation
 Define boxplus operator

Measurement space(s) Z
 Qualify the Domain
 Define an Euclidean parameterization for the perturbation
 Define boxminus operator

Identify the prediction functions h(X)



MICP: State and Measurements
State

Measurements



MICP: Error
The measurements are Euclidean, no need for 
boxminus



MICP: Jacobian
Linearizing around the 0 of the chart simplifies 
the calculations



MICP: Code
function T=v2t(v)
    T=eye(4);
    T(1:3,1:3)=Rx(v(4))*Ry(v(5))*Rz(v(6));
    T(1:3,4)=v(1:3);
endfunction;

function [e,J]=errorAndJacobianManifold(X,p,z)
   z_hat=X(1:3,1:3)*p+X(1:3,4); #prediction
   e=z_hat­z;
   J=zeros(3,6);
   J(1:3,1:3)=eye(3);
   J(1:3,4:6)=skew(z_hat);
endfunction



MICP: Code
function [X, chi_stats]=doICPManifold(X_guess, P, Z, n_it)
  X=X_guess;
  chi_stats=zeros(1,n_it);
  for (iteration=1:n_it)
    H=zeros(6,6);
    b=zeros(6,1);
    chi=0;
    for (i=1:size(P,2))
      [e,J] = errorAndJacobianManifold(X, P(:,i), Z(:,i));
      H+=J'*J;
      b+=J'*e;
      chi+=e'*e;
    endfor
    chi_stats(iteration)=chi;
    dx=­H\b;
    X=v2t(dx)*X;
  endfor
endfunction



Testing
Spawn a set of 
random points in 3D

Define a location of 
the robot

Compute syntetic 
measurements from 
that location

Set the origin as initial 
guess

Run ICP and plot the 
evolution of the error

iterations

F(
x)

`

I need about 5 
iterations to get a 
decent error

Without manifold

With manifold



Let's inject an increasing number of outliers

Outliers

0%

25%
50%



Robust Kernels
Outliers in the data due to data association result in 
performance loss

There will be outliers

Hint: Lessen the contribution of measurements having 
higher error (e.g. using Robust Kernels)

Trivial Kernel Implementation
If (error>threshold){

scale_error_so_that_its_norm_is_the_threshold();

}



MICP with Outliers: Code
function [X, chi_stats]=doICPManifold(X_guess, P, Z, n_it)
  X=X_guess;
  chi_stats=zeros(1,n_it);
  for (iteration=1:n_it)
    H=zeros(6,6);
    b=zeros(6,1);
    for (i=1:size(P,2))
      [e,J] = errorAndJacobianManifold(X, P(:,i), Z(:,i));
      chi=e'*e;
      if(chi>threshold)
        e*=sqrt(threshold/chi);
      endif;
      H+=J'*J;
      b+=J'*e;
     chi_stats(iteration)+=chi;
    endfor
    dx=­H\b;
    X=v2t(dx)*X;
  endfor
endfunction



Behavior with Outliers
Instead of measuring the F(x) we measure the 
number of  inliers as the algorithm evolves

The closer is the estimated # of inliers to the 
true fraction the better is our system

0%

75%

50%



Take Home Message
Gauss-Newton is a powerful tool used as building 
block of modern SLAM systems

It is used both within 
 front-end (like in this lecture) 
 back end (like in the next)

In this talk we provided basics for
 Formalizing the problem
 Hacking a solver
 Dealing with non-Euclidean spaces
 Cope with some outliers



Take Home Message
Works under its assumptions, that are

 Mild measurement functions
 Decent initial guess
 The system is observable

Some software Implementing GN

Calibration                              ICP                              Sparse LS     
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