
From Least-Squares to ICP

Giorgio Grisetti
grisetti@dis.uniroma1.it

Dept of Computer Control and Management Engineering
Sapienza University of Rome

Download Code Here
http://www.dis.uniroma1.it/~labrococo/tutorial_icra_2016/ICP_3D.tgz

Special thanks to Ulrich Wollath for reporting errors in the early version of slides and code

SLAM as Estimation

pose

landmark

observation

SLAM as Estimation

pose

landmark

observation

odometry

SLAM as Estimation

pose

landmark

observation

odometry

SLAM as Estimation

pose

landmark

observation

odometry

SLAM as Estimation

?

?

?

?

?

?

?

?

?

?

Maximum Likelihood Estimation

Estimate
 P(, | ,)

Maximum Likelihood Estimation

Estimate
 P(, | ,)

x*: state most consistent with observations

State

Measurements

Maximum Likelihood Estimation
Using

Bayes' Rule

Independence,

We can further simplify
the task

Maximum Likelihood Estimation
Using

Bayes' Rule

Independence,

We can further simplify
the task

Gaussian Assumption
Measurements affected by Gaussian noise

Gaussian Assumption
Measurements affected by Gaussian noise

prediction

statemeasurement

error function

Gaussian Assumption
Through Gaussian assumption
Maximization becomes minimization
Product turns into sum

Gauss Method Overview
Iterative minimization of

Each iteration refines the current estimate by
applying a perturbation

Perturbation obtained by minimizing a
quadratic approximation of the problem in

Linearization
The quadratic approximation is obtained by
linearizing the error functions around

...expanding the products

...and grouping the terms

Quadratic form
Find the that minimizes the quadratic
approximation of the objective function

Find that nulls the derivative of quadratic
form

Algorithm (one Iteration)
Clear H and b

For each measurement, update h and b

Update the estimate with the perturbation

Methodology
Identify the state space X

 Qualify the domain
 Find a locally Euclidean parameterization

Identify the measurement space(s) Z
 Qualify the domain
 Find a locally Euclidean parameterization

Identify the prediction functions h(x)

Gauss-Newton in SLAM
Typical problems where GN is used

 Calibration
 Registration

 Cloud to Cloud (ICP)
 Image to Cloud (Posit)

 Global Optimization
 Pose-SLAM
 Bundle Adjustment

Warning
 Data association is assumed to be known known
 Gauss-Newton alone is not sufficient to solve a full
problem

 One needs a strategy to compute data association

Gauss-Newton in SLAM
Typical problems where GN is used

 Calibration
 Registration

 Cloud to Cloud (ICP)
 Image to Cloud (Posit)

 Global Optimization
 Pose-SLAM
 Bundle Adjustment

Warning
 Data association is assumed to be known known
 Gauss-Newton alone is not sufficient to solve a full
problem

 One needs a strategy to compute data association

Cyrill and Michael's Talks

Example ICP Optimization in 3D
Given a set of points in the world frame

Example ICP Optimization in 3D
A set of 3D measurements in the robot frame

Example ICP Optimization in 3D
Roughly known correspondences

Example ICP Optimization in 3D
We want to find a transform that minimizes
distance between corresponding points

Example ICP Optimization in 3D
Such a transform will be the pose of world w.r.t.
robot

Note: we can also estimate robot w.r.t world,
but it leads to longer calculations

ICP: State and Measurements
State

Measurements

On Rotation Matrices
A rotation is obtained by composing the
rotations along x-y-z

Small lookup of rotations (and derivatives)

ICP: Jacobian

ICP: Octave Code
function [e,J]=errorAndJacobian(x,p,z)
 rx=Rx(x(4)); #rotation matrices at x
 ry=Ry(x(5));
 rz=Rz(x(6));
 rx_p=Rx_prime(x(4)); #derivatives at x
 ry_p=Ry_prime(x(5));
 rz_p=Rz_prime(x(6));
 t=x(1:3);

 z_hat=rx*ry*rz*p+t; #prediction
 e=z_hat­z; #error
 J=zeros(3,6); #jacobian
 J(1:3,1:3)=eye(3); #translational part of jacobian

 J(1:3,4)=rx_p*ry*rz*p; #de/dax
 J(1:3,5)=rx*ry_p*rz*p; #de/day
 J(1:3,6)=rx*ry*rz_p*p; #de/daz
endfunction

ICP: Octave Code
function [x, chi_stats]=doICP(x_guess, P, Z, num_iterations)
 x=x_guess;
 chi_stats=zeros(1,num_iterations); #ignore this for now
 for (iteration=1:num_iterations)
 H=zeros(6,6);
 b=zeros(6,1);
 chi=0;
 for (i=1:size(P,2))
 [e,J] = errorAndJacobian(x, P(:,i), Z(:,i));
 H+=J'*J;
 b+=J'*e;
 chi+=e'*e;
 endfor
 chi_stats(iteration)=chi;
 dx=­H\b;
 x+=dx;
 endfor
endfunction

Testing, good initial guess
Spawn a set of random
points in 3D

Define a location of the
robot

Compute synthetic
measurements from
that location

Set the a point close to
the true location as
initial guess

Run ICP and plot the
evolution of the error

When started from a
good guess, the
system converges
nicely

Testing, bad initial guess
Spawn a set of
random points in 3D

Define a location of
the robot

Compute synthetic
measurements from
that location

Set the origin as initial
guess

Run ICP and plot the
evolution of the error

If the guess is poor, the
system might take long
to converge

The error might
increase

Non-Euclidean Spaces
In SLAM we often encounter spaces that have a
non-euclidean topology

 E.g.: 2D angles

Non-Euclidean Spaces
In such cases we commonly operate on a locally
Euclidean parameterization

 E.g. we map the angles in the interval [-pi:pi]

Non-Euclidean Spaces
We can then measure distances in the
Euclidean mapping through a regular
subtraction

Non-Euclidean Spaces
We can then measure distances in the
Euclidean mapping through a regular
subtraction

Non-Euclidean Spaces
We can then measure distances in the
Euclidean mapping through a regular
subtraction

The direction of the distance is the opposite!!!

Non-Euclidean Spaces
Idea: when computing the distances, build the
Euclidean mapping in the neighborhood of one
of the points: the chart around X0.

The direction of the distance is the opposite!!!

Computing Differences
 : start point, on manifold

 : end point, on manifold

 : difference, on chart

Compute a chart around
Compute the location of on the chart
Measure the difference between points in the
chart

Chart is Euclidean:
Use an operator

Hertzberg, Wagner, Frese and Schroeder 2011

Applying Differences
 : start point, on manifold

 : difference on chart

 : end point, on manifold reachable from

 by moving of on the chart

Compute a chart around
Move of in the chart and go back to the
manifold

Encapsulate the operation with an operator

Algorithm (One Iteration)
Clear H and b

For each measurement

Compute and apply the perturbation

Gauss in Non Euclidean Spaces
Beware of the + and – operators

Error function

Taylor expansion

Increments

Algorithm (One Iteration)
Clear H and b

For each measurement

Compute and apply the perturbation

Methodology
State space X

 Qualify the Domain
 Define an Euclidean parameterization for the perturbation
 Define boxplus operator

Measurement space(s) Z
 Qualify the Domain
 Define an Euclidean parameterization for the perturbation
 Define boxminus operator

Identify the prediction functions h(X)

MICP: State and Measurements
State

Measurements

MICP: Error
The measurements are Euclidean, no need for
boxminus

MICP: Jacobian
Linearizing around the 0 of the chart simplifies
the calculations

MICP: Code
function T=v2t(v)
 T=eye(4);
 T(1:3,1:3)=Rx(v(4))*Ry(v(5))*Rz(v(6));
 T(1:3,4)=v(1:3);
endfunction;

function [e,J]=errorAndJacobianManifold(X,p,z)
 z_hat=X(1:3,1:3)*p+X(1:3,4); #prediction
 e=z_hat­z;
 J=zeros(3,6);
 J(1:3,1:3)=eye(3);
 J(1:3,4:6)=skew(z_hat);
endfunction

MICP: Code
function [X, chi_stats]=doICPManifold(X_guess, P, Z, n_it)
 X=X_guess;
 chi_stats=zeros(1,n_it);
 for (iteration=1:n_it)
 H=zeros(6,6);
 b=zeros(6,1);
 chi=0;
 for (i=1:size(P,2))
 [e,J] = errorAndJacobianManifold(X, P(:,i), Z(:,i));
 H+=J'*J;
 b+=J'*e;
 chi+=e'*e;
 endfor
 chi_stats(iteration)=chi;
 dx=­H\b;
 X=v2t(dx)*X;
 endfor
endfunction

Testing
Spawn a set of
random points in 3D

Define a location of
the robot

Compute syntetic
measurements from
that location

Set the origin as initial
guess

Run ICP and plot the
evolution of the error

iterations

F(
x)

`

I need about 5
iterations to get a
decent error

Without manifold

With manifold

Let's inject an increasing number of outliers

Outliers

0%

25%
50%

Robust Kernels
Outliers in the data due to data association result in
performance loss

There will be outliers

Hint: Lessen the contribution of measurements having
higher error (e.g. using Robust Kernels)

Trivial Kernel Implementation
If (error>threshold){

scale_error_so_that_its_norm_is_the_threshold();

}

MICP with Outliers: Code
function [X, chi_stats]=doICPManifold(X_guess, P, Z, n_it)
 X=X_guess;
 chi_stats=zeros(1,n_it);
 for (iteration=1:n_it)
 H=zeros(6,6);
 b=zeros(6,1);
 for (i=1:size(P,2))
 [e,J] = errorAndJacobianManifold(X, P(:,i), Z(:,i));
 chi=e'*e;
 if(chi>threshold)
 e*=sqrt(threshold/chi);
 endif;
 H+=J'*J;
 b+=J'*e;
 chi_stats(iteration)+=chi;
 endfor
 dx=­H\b;
 X=v2t(dx)*X;
 endfor
endfunction

Behavior with Outliers
Instead of measuring the F(x) we measure the
number of inliers as the algorithm evolves

The closer is the estimated # of inliers to the
true fraction the better is our system

0%

75%

50%

Take Home Message
Gauss-Newton is a powerful tool used as building
block of modern SLAM systems

It is used both within
 front-end (like in this lecture)
 back end (like in the next)

In this talk we provided basics for
 Formalizing the problem
 Hacking a solver
 Dealing with non-Euclidean spaces
 Cope with some outliers

Take Home Message
Works under its assumptions, that are

 Mild measurement functions
 Decent initial guess
 The system is observable

Some software Implementing GN

Calibration ICP Sparse LS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

