From Least-Squares to ICP

Giorgio Grisetti

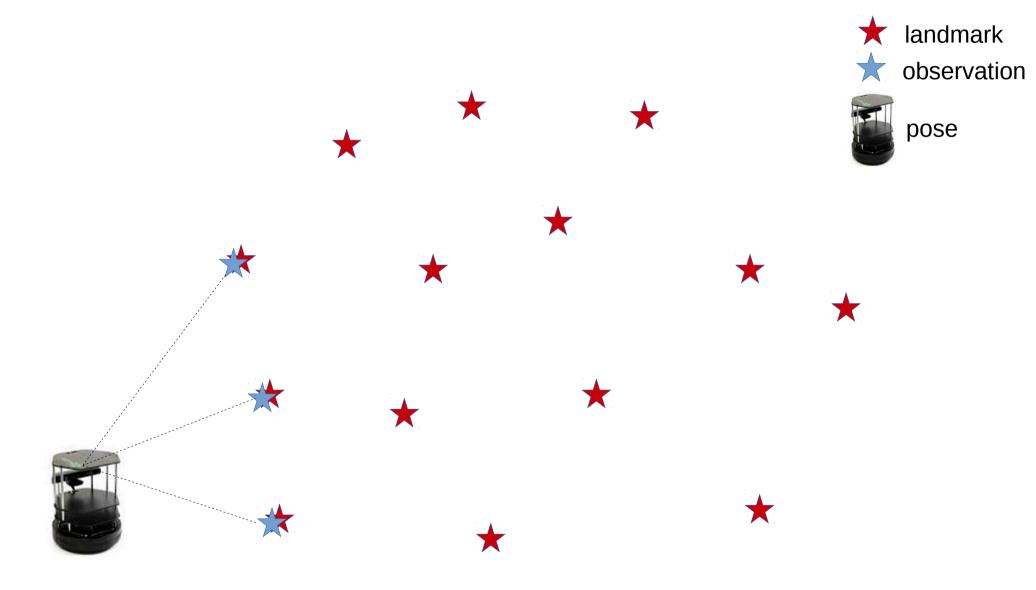
grisetti@dis.uniroma1.it

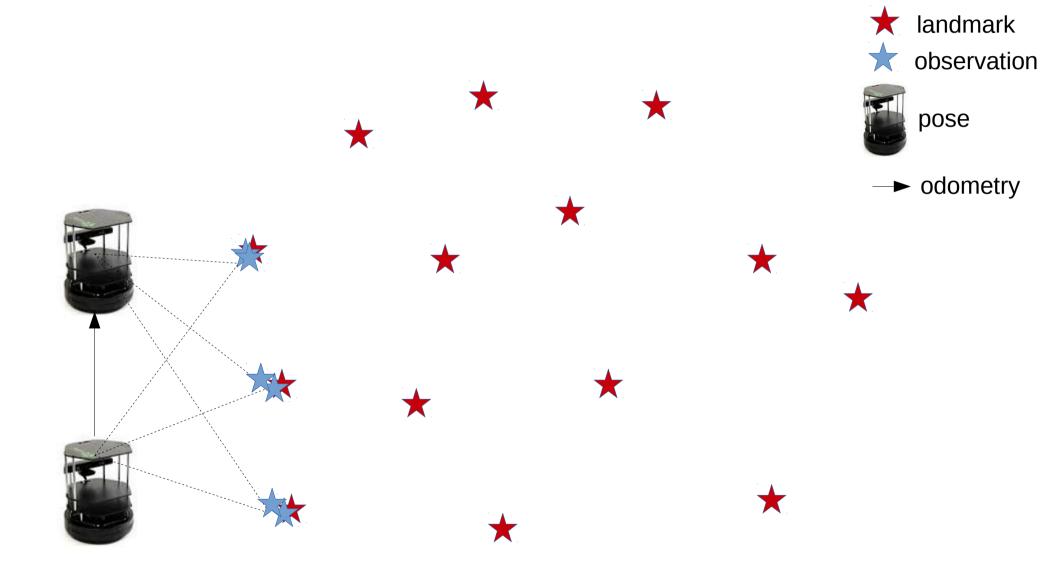
Dept of Computer Control and Management Engineering Sapienza University of Rome

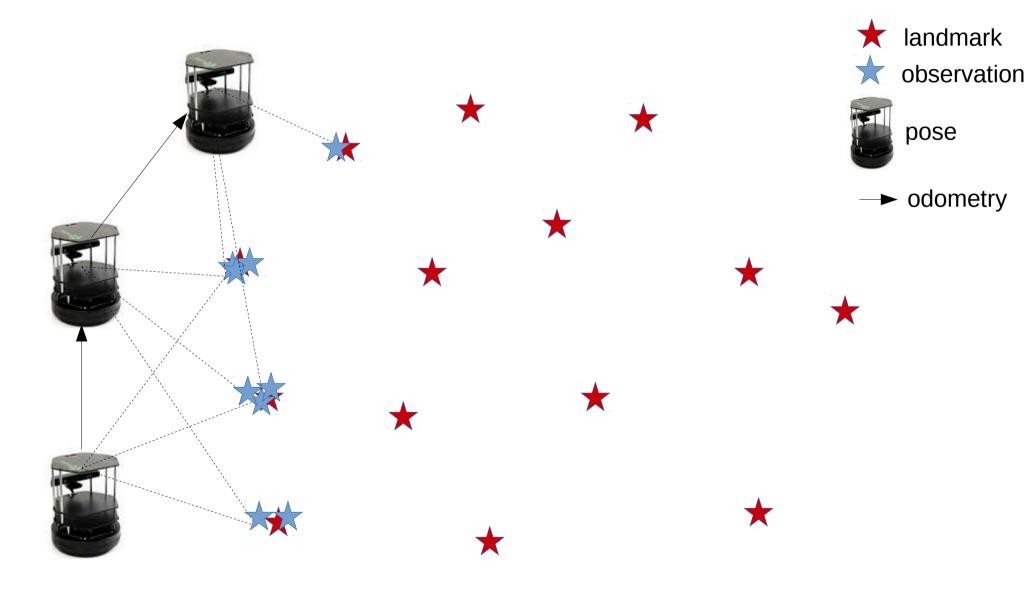
Download Code Here

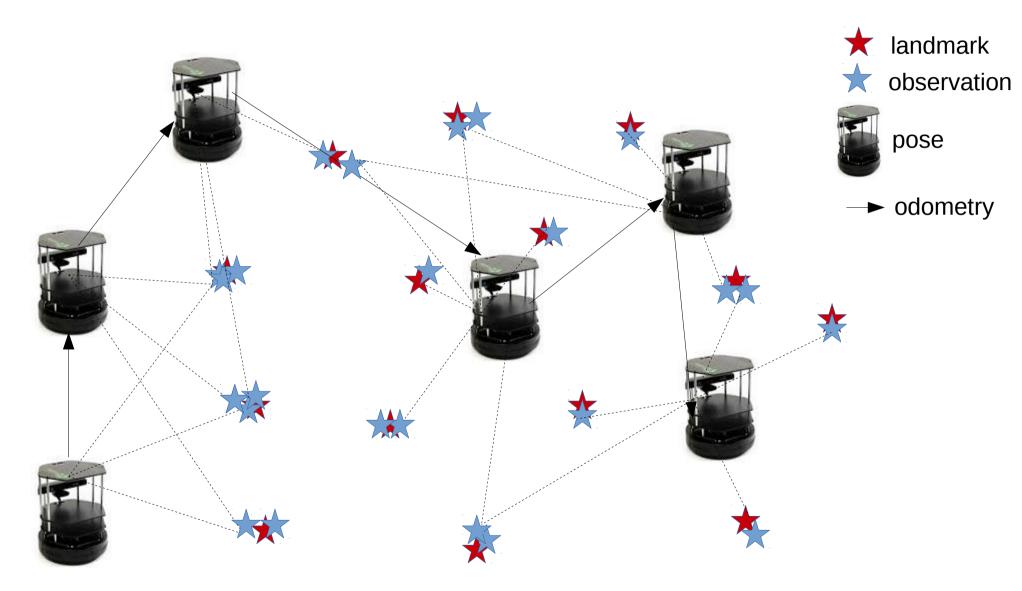
http://www.dis.uniroma1.it/~labrococo/tutorial_icra_2016/ICP_3D.tgz

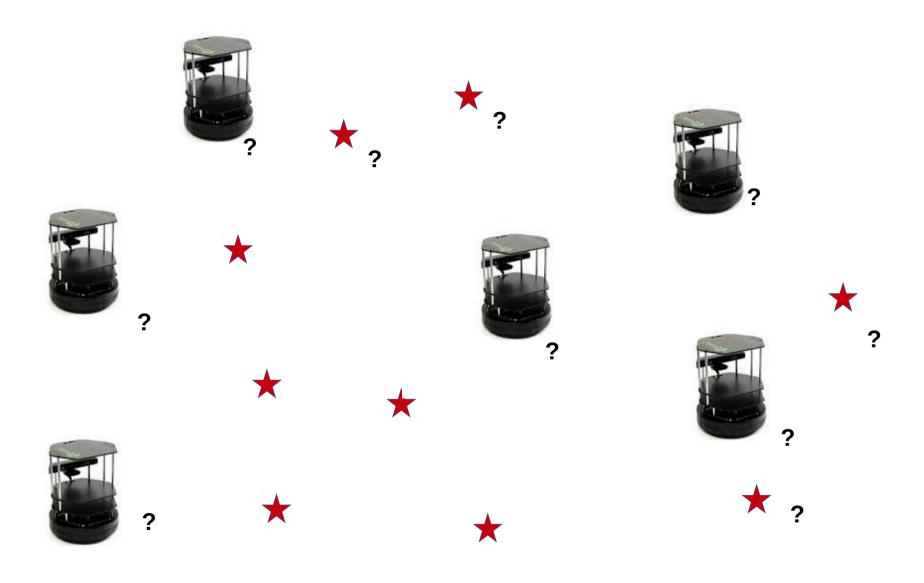
Special thanks to **Ulrich Wollath** for reporting errors in the early version of slides and code







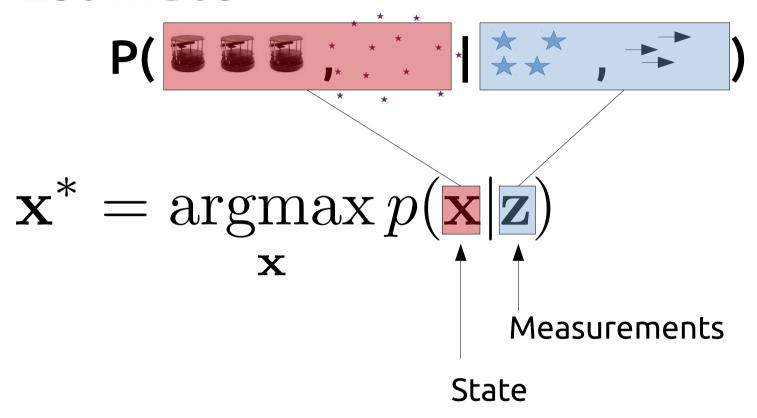




Estimate

$$\mathbf{x}^* = \operatorname*{argmax} p(\mathbf{x}|\mathbf{z})$$

Estimate



x*: state most consistent with observations

Using

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmax}} p(\mathbf{x}|\mathbf{z})$$

Bayes' Rule

$$p(\mathbf{x}|\mathbf{z}) = \frac{p(\mathbf{z}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{z})}$$

$$\propto p(\mathbf{z}|\mathbf{x})$$

Independence,

$$= \prod_{i} p(\mathbf{z}_{i}|\mathbf{x})$$

We can further simplify the task

Using

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmax}} p(\mathbf{x}|\mathbf{z})$$

Bayes' Rule

$$p(\mathbf{x}|\mathbf{z}) = \frac{p(\mathbf{z}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{z})}$$

$$\propto p(\mathbf{z}|\mathbf{x})$$

Independence,

$$= \prod_{i} p(\mathbf{z}_{i}|\mathbf{x})$$

We can further simplify the task

Gaussian Assumption

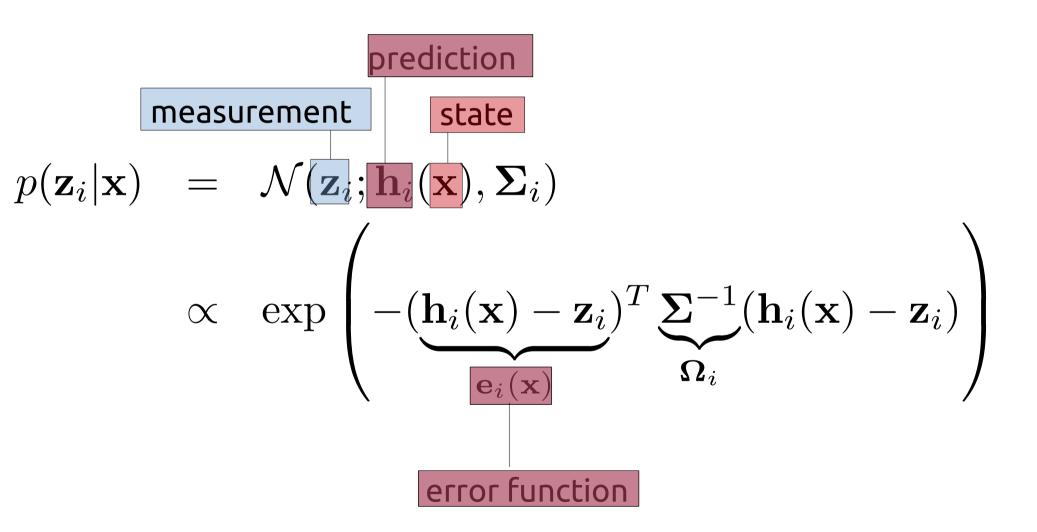
Measurements affected by Gaussian noise

$$p(\mathbf{z}_i|\mathbf{x}) = \mathcal{N}(\mathbf{z}_i; \mathbf{h}_i(\mathbf{x}), \mathbf{\Sigma}_i)$$

$$\propto \exp \left(-(\mathbf{h}_i(\mathbf{x}) - \mathbf{z}_i)^T \mathbf{\Sigma}^{-1}(\mathbf{h}_i(\mathbf{x}) - \mathbf{z}_i)\right)$$

Gaussian Assumption

Measurements affected by Gaussian noise



Gaussian Assumption

Through Gaussian assumption

- Maximization becomes minimization
- Product turns into sum

$$\mathbf{x}^* = \underset{x}{\operatorname{argmax}} \prod_{i} p(\mathbf{z}_i | \mathbf{x})$$

$$= \underset{x}{\operatorname{argmax}} \prod_{i} \exp(-\mathbf{e}_i(\mathbf{x})^T \mathbf{\Omega}_i \mathbf{e}_i(\mathbf{x}))$$

$$= \underset{x}{\operatorname{argmin}} \sum_{i} \mathbf{e}_i(\mathbf{x})^T \mathbf{\Omega}_i \mathbf{e}_i(\mathbf{x})$$

Gauss Method Overview

Iterative minimization of

$$F(\mathbf{x}) = \sum_{i} \mathbf{e}_{i}(\mathbf{x})^{T} \mathbf{\Omega}_{i} \mathbf{e}_{i}(\mathbf{x})$$

Each iteration refines the current estimate by applying a perturbation

$$\mathbf{x} \leftarrow \mathbf{x} + \mathbf{\Delta}\mathbf{x}$$

Perturbation obtained by minimizing a quadratic approximation of the problem in Δx

$$F(\mathbf{x} + \Delta \mathbf{x}) \simeq \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x} + 2 \mathbf{b}^T \Delta \mathbf{x} + c$$

Linearization

The quadratic approximation is obtained by linearizing the error functions around ${\bf x}$

$$\mathbf{e}_i(\mathbf{x}^* + \mathbf{\Delta}\mathbf{x}) \;\; \simeq \;\; \underbrace{\mathbf{e}_i(\mathbf{x}^*)}_{\mathbf{e}} + \underbrace{\frac{\partial \mathbf{e}_i(\mathbf{x})}{\partial (\mathbf{x})}}_{\mathbf{x} = \mathbf{x}^*} \mathbf{\Delta}\mathbf{x}$$

...expanding the products

$$\mathbf{e}_{i}(\mathbf{x}^{*} + \Delta \mathbf{x})^{T} \mathbf{\Omega}_{i} \mathbf{e}_{i}(\mathbf{x}^{*} + \Delta \mathbf{x}) \simeq$$

$$\Delta \mathbf{x}^{T} \underbrace{\mathbf{J}_{i}^{T} \mathbf{\Omega}_{i} \mathbf{J}_{i}}_{\mathbf{H}_{i}} \Delta \mathbf{x} + 2 \underbrace{\mathbf{J}_{i}^{T} \mathbf{\Omega}_{i} \mathbf{e}_{i}}_{\mathbf{b}_{i}^{T}} \Delta_{x} + \underbrace{\mathbf{e}_{i}^{T} \mathbf{\Omega}_{i} \mathbf{e}_{i}}_{c_{i}}$$

...and grouping the terms

$$\mathbf{H} = \sum_{i} \mathbf{H}_{i}$$
 $\mathbf{b} = \sum_{i} \mathbf{b}_{i}$ $c = \sum_{i} c_{i}$

Quadratic form

Find the Δx that minimizes the quadratic approximation of the objective function

$$\Delta \mathbf{x}^* = \underset{\Delta \mathbf{x}}{\operatorname{argmin}} F(\mathbf{x}^* + \Delta \mathbf{x})$$

$$\simeq \underset{\Delta \mathbf{x}}{\operatorname{argmin}} \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x} + 2\mathbf{b}^T \Delta \mathbf{x} + c$$

Find $\Delta \mathbf{x}$ that nulls the derivative of quadratic form

$$\mathbf{0} = \frac{\partial \left[\mathbf{\Delta} \mathbf{x}^T \mathbf{H} \mathbf{\Delta} \mathbf{x} + 2 \mathbf{b}^T \mathbf{\Delta} \mathbf{x} + c \right]}{\partial \mathbf{\Delta} \mathbf{x}}$$
$$-\mathbf{b} = \mathbf{H} \mathbf{\Delta} \mathbf{x}$$

Algorithm (one Iteration)

Clear H and b

$$\mathbf{H} \leftarrow 0 \qquad \mathbf{b} \leftarrow 0$$

For each measurement, update h and b

$$egin{array}{lll} \mathbf{e}_i & \leftarrow & \mathbf{h}_i(\mathbf{x}^*) - \mathbf{z}_i \ & \mathbf{J}_i & \leftarrow & rac{\partial \mathbf{e}_i(\mathbf{x})}{\partial \mathbf{x}} igg|_{\mathbf{x} = \mathbf{x}^*} \ & \mathbf{H} & \leftarrow & \mathbf{H} + \mathbf{J}_i^T \mathbf{\Omega}_i \mathbf{J}_i \ & \mathbf{b} & \leftarrow & \mathbf{b} + \mathbf{J}_i^T \mathbf{\Omega}_i \mathbf{e}_i \end{array}$$

Update the estimate with the perturbation

$$egin{array}{lll} oldsymbol{\Delta} \mathbf{x} &\leftarrow & \mathrm{solve}(\mathbf{H} oldsymbol{\Delta} \mathbf{x} = -\mathbf{b}) \\ \mathbf{x}^* \leftarrow & \mathbf{x}^* + oldsymbol{\Delta} \mathbf{x} \end{array}$$

Methodology

Identify the state space X

- Qualify the domain
- Find a locally Euclidean parameterization

Identify the measurement space(s) **Z**

- Qualify the domain
- Find a locally Euclidean parameterization

Identify the prediction functions h(x)

Gauss-Newton in SLAM

Typical problems where GN is used

- Calibration
- Registration
 - Cloud to Cloud (ICP)
 - Image to Cloud (Posit)
- Global Optimization
 - Pose-SLAM
 - Bundle Adjustment

Warning

- Data association is assumed to be known known
- Gauss-Newton alone is not sufficient to solve a full problem
- One needs a strategy to compute data association

Gauss-Newton in SLAM

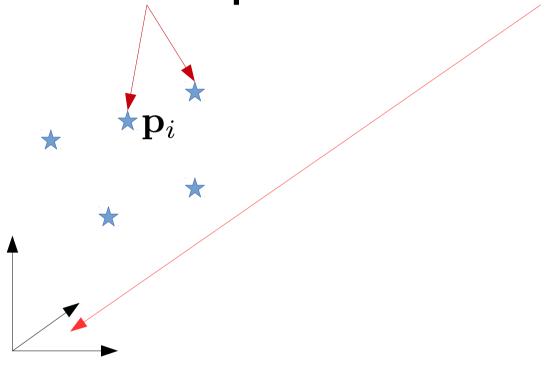
Typical problems where GN is used

- Calibration
- Registration
 - Cloud to Cloud (ICP)
 - Image to Cloud (Posit)
- Global Optimization
- Bundle Holas Michael's Talks

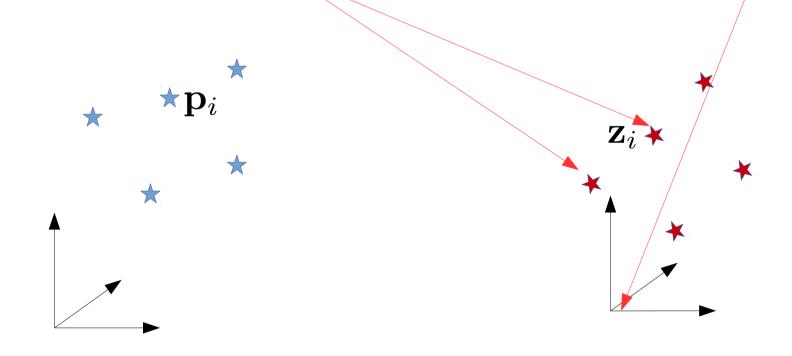
Warning

- Data association is assumed to be known known
- Gauss-Newton alone is not sufficient to solve a full problem
- One needs a strategy to compute data association

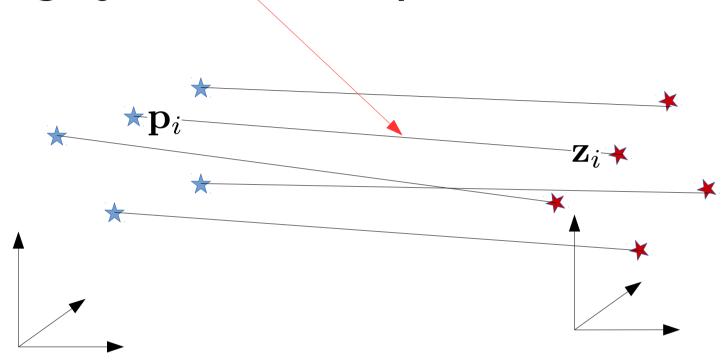
Given a set of points in the world frame



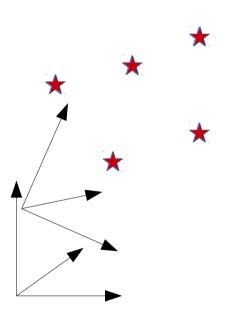
A set of 3D measurements in the robot frame



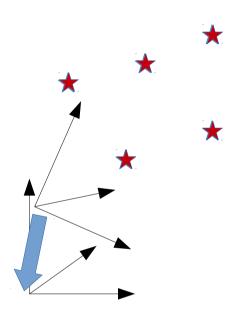
Roughly known correspondences



We want to find a transform that minimizes distance between corresponding points



Such a transform will be the pose of world w.r.t. robot



Note: we can also estimate robot w.r.t world, but it leads to longer calculations

ICP: State and Measurements

State

$$\mathbf{x} \in SE(3)$$

$$\mathbf{x} = (\underbrace{x \, y \, z}_{\mathbf{t}} \, \underbrace{\alpha_x \, \alpha_y \, \alpha_z})^T$$

Measurements

$$\mathbf{z} \in \Re^3$$
 $\mathbf{h}_i(\mathbf{x}) = \mathbf{R}(\alpha)\mathbf{p}_i + \mathbf{t}$

On Rotation Matrices

A rotation is obtained by composing the rotations along x-y-z

$$\mathbf{R}(\alpha) = \mathbf{R}_x(\alpha_x)\mathbf{R}_y(\alpha_y)\mathbf{R}_z(\alpha_z)$$

Small lookup of rotations (and derivatives)

$$\mathbf{R}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{pmatrix} \qquad \mathbf{R}_{y} = \begin{pmatrix} c & 0 & s \\ 0 & 1 & 0 \\ -s & 0 & c \end{pmatrix} \qquad \mathbf{R}_{z} = \begin{pmatrix} c & -s & 0 \\ s & c & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}'_{x} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -s & -c \\ 0 & c & -s \end{pmatrix} \quad \mathbf{R}'_{y} = \begin{pmatrix} -s & 0 & c \\ 0 & 0 & 0 \\ -c & 0 & -s \end{pmatrix} \quad \mathbf{R}'_{z} = \begin{pmatrix} -s & -c & 0 \\ c & -s & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ICP: Jacobian

$$\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \mathbf{x}} = \left(\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \mathbf{t}} \frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \alpha_{x}} \frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \alpha_{y}} \frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \alpha_{z}}\right)$$

$$\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \mathbf{t}} = \mathbf{I}$$

$$\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \alpha_{x}} = \mathbf{R}'_{x} \mathbf{R}_{y} \mathbf{R}_{z} \mathbf{p}_{i}$$

$$\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \alpha_{y}} = \mathbf{R}_{x} \mathbf{R}'_{y} \mathbf{R}_{z} \mathbf{p}_{i}$$

$$\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \alpha_{z}} = \mathbf{R}_{x} \mathbf{R}_{y} \mathbf{R}'_{z} \mathbf{p}_{i}$$

ICP: Octave Code

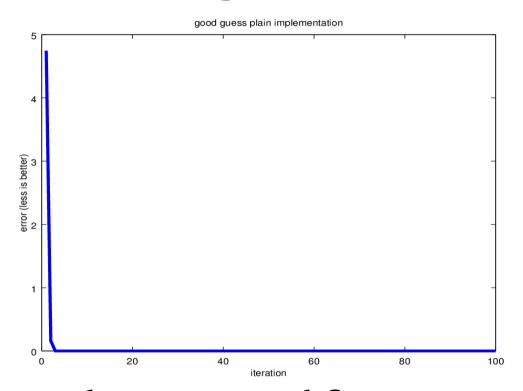
```
function [e,J]=errorAndJacobian(x,p,z)
  rx=Rx(x(4)); #rotation matrices at x
 ry=Ry(x(5));
 rz=Rz(x(6));
  rx_p=Rx_prime(x(4)); #derivatives at x
 ry_p=Ry_prime(x(5));
 rz_p=Rz_prime(x(6));
 t=x(1:3);
  z_hat=rx*ry*rz*p+t; #prediction
                #error
 e=z_hat-z;
 J=zeros(3,6); #jacobian
 J(1:3,1:3) = eye(3); #translational part of jacobian
 J(1:3,4)=rx_p*ry*rz*p; #de/dax
 J(1:3,5)=rx*ry_p*rz*p; #de/day
 J(1:3,6)=rx*ry*rz_p*p; #de/daz
endfunction
```

ICP: Octave Code

```
function [x, chi stats] = doICP(x guess, P, Z, num iterations)
 x=x quess;
  chi_stats=zeros(1,num_iterations); #ignore this for now
  for (iteration=1:num iterations)
    H=zeros(6,6);
    b=zeros(6,1);
    chi=0:
    for (i=1:size(P,2))
      [e,J] = errorAndJacobian(x, P(:,i), Z(:,i));
      H+=J'*J;
      b+=J'*e;
      chi+=e'*e;
    endfor
    chi_stats(iteration)=chi;
    dx = -H/b;
    x += dx;
  endfor
endfunction
```

Testing, good initial guess

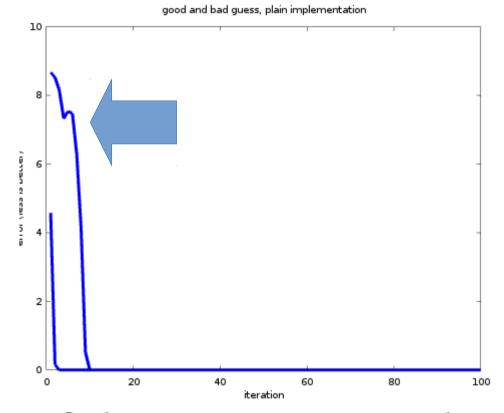
- Spawn a set of random points in 3D
- Define a location of the robot
- Compute synthetic measurements from that location
- Set the a point close to the true location as initial guess
- Run ICP and plot the evolution of the error



 When started from a good guess, the system converges nicely

Testing, bad initial guess

- Spawn a set of random points in 3D
- Define a location of the robot
- Compute synthetic measurements from that location
- Set the origin as initial guess
- Run ICP and plot the evolution of the error

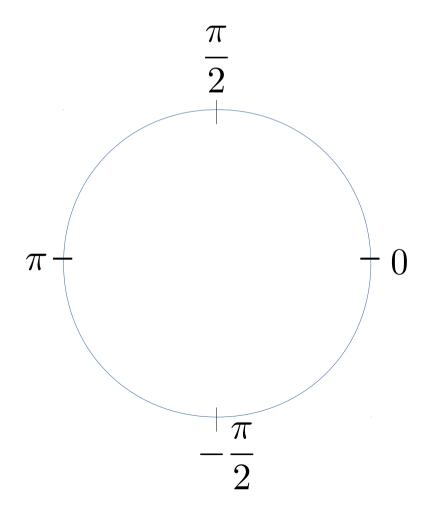


- If the guess is poor, the system might take long to converge
- The error might increase

Non-Euclidean Spaces

In SLAM we often encounter spaces that have a non-euclidean topology

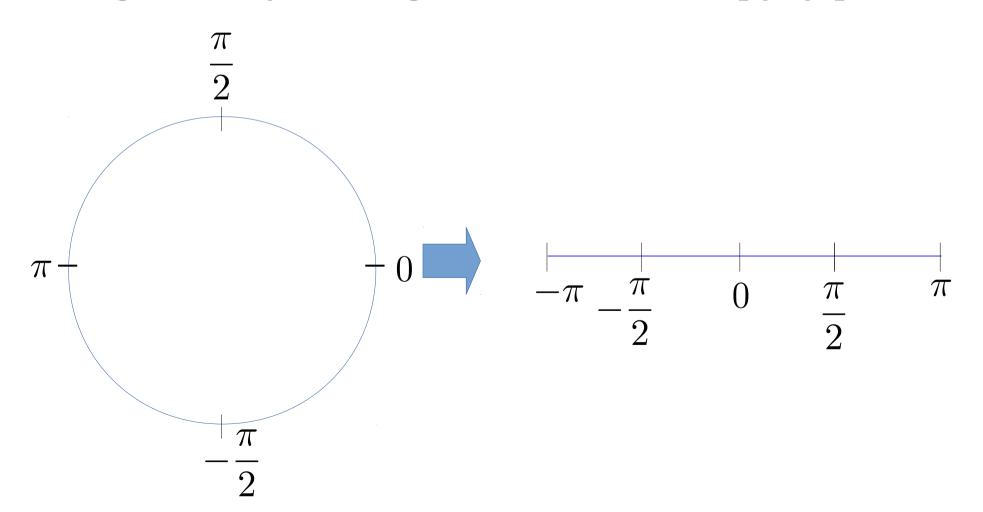
•E.g.: 2D angles



Non-Euclidean Spaces

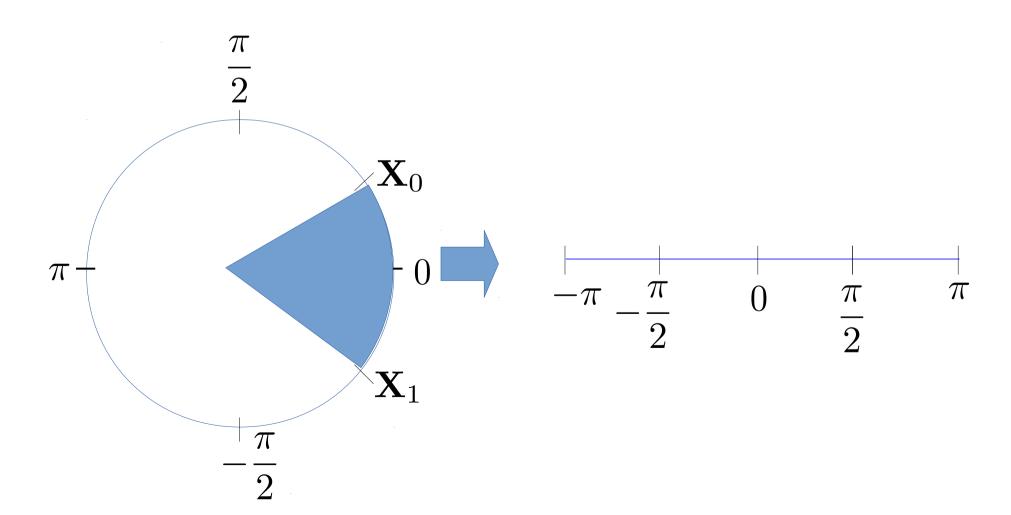
In such cases we commonly operate on a locally Euclidean parameterization

•E.g. we map the angles in the interval [-pi:pi]



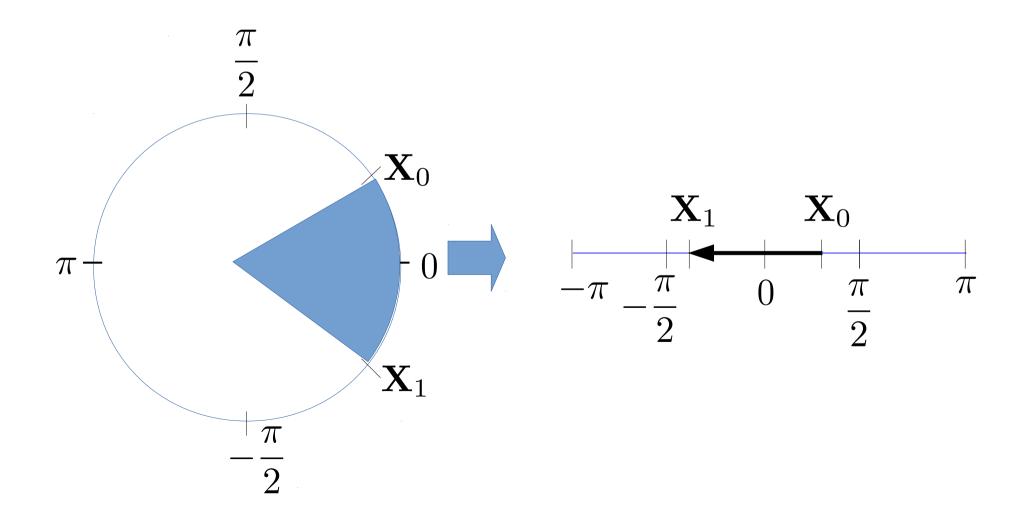
Non-Euclidean Spaces

We can then measure distances in the Euclidean mapping through a regular subtraction



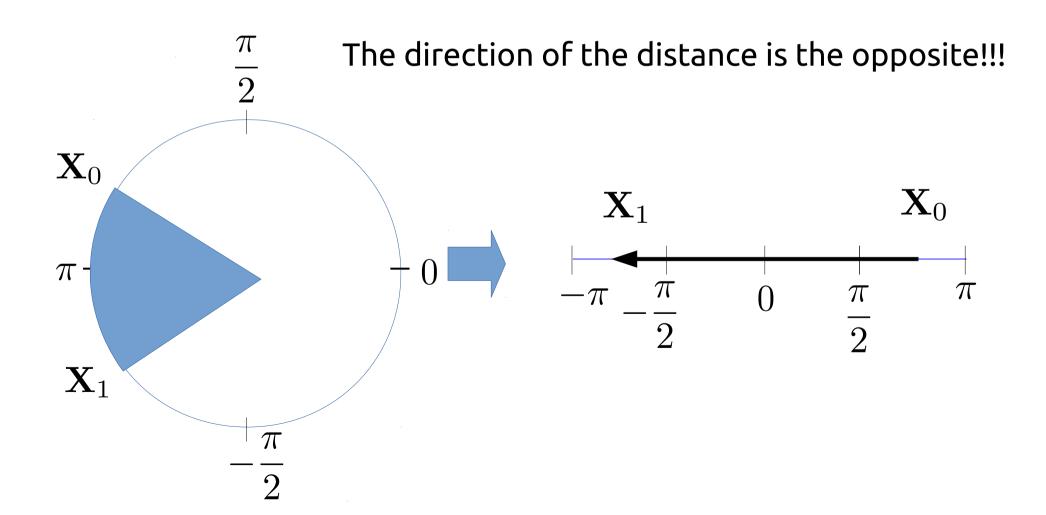
Non-Euclidean Spaces

We can then measure distances in the Euclidean mapping through a regular subtraction



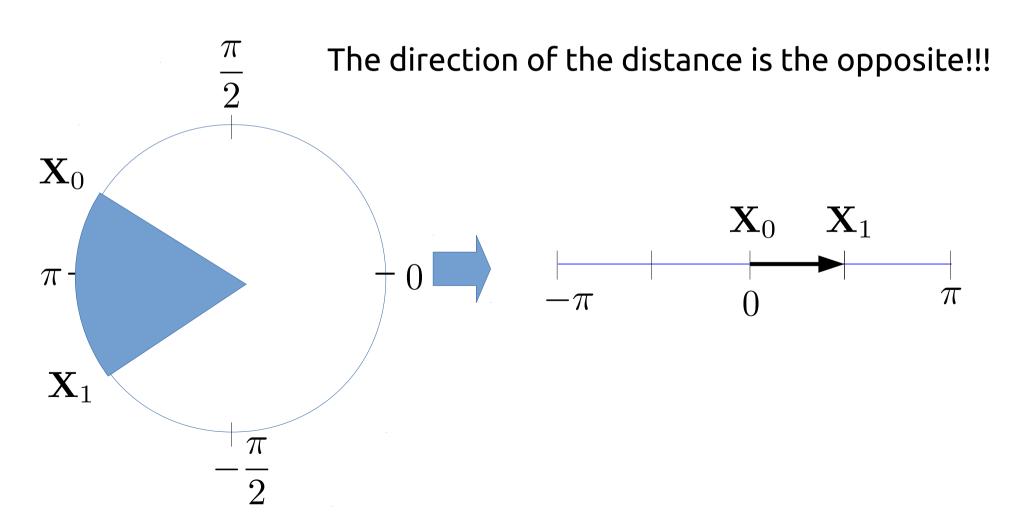
Non-Euclidean Spaces

We can then measure distances in the Euclidean mapping through a regular subtraction



Non-Euclidean Spaces

Idea: when computing the distances, build the Euclidean mapping in the neighborhood of one of the points: the chart around X0.



Computing Differences

 X_0 : start point, on manifold

 X_1 : end point, on manifold

 Δx : difference, on chart

- •Compute a chart around ${f X}_0$
- •Compute the location of X_1 on the chart
- Measure the difference between points in the chart
- •Chart is Euclidean: $X_0 = X_1 \Rightarrow \Delta x = 0$
- •Use an operator $\mathbf{X}_1 \boxminus \mathbf{X}_0 = \mathbf{\Delta} \mathbf{x}$

Applying Differences

 X_0 : start point, on manifold

 Δx : difference on chart

 ${f X}_1$: end point, on manifold reachable from ${f X}_0$ by moving of $\Delta {f x}$ on the chart

- •Compute a chart around \mathbf{X}_0
- •Move of Δx in the chart and go back to the manifold
- Encapsulate the operation with an operator

$$\mathbf{X}_0 \boxplus \mathbf{\Delta} \mathbf{x} = \mathbf{X}_1$$

Algorithm (One Iteration)

Clear H and b

$$\mathbf{H} \leftarrow 0 \qquad \mathbf{b} \leftarrow 0$$

For each measurement

$$egin{array}{lll} \mathbf{e}_i & \leftarrow & \mathbf{h}_i(\mathbf{X}^*) oxplus \mathbf{Z}_i \ & \mathbf{J}_i & \leftarrow & rac{\partial \mathbf{e}(\mathbf{X}^* oxplus \mathbf{\Delta} \mathbf{x})}{\partial \mathbf{\Delta} \mathbf{x}} igg|_{\mathbf{\Delta} \mathbf{x} = \mathbf{0}} \ & \mathbf{H} & \leftarrow & \mathbf{H} + \mathbf{J}_i^T \mathbf{\Omega}_i \mathbf{J}_i \ & \mathbf{b} & \leftarrow & \mathbf{b} + \mathbf{J}_i^T \mathbf{\Omega}_i \mathbf{e}_i \end{array}$$

Compute and apply the perturbation

$$\mathbf{\Delta x} \leftarrow \operatorname{solve}(\mathbf{H}\mathbf{\Delta x} = -\mathbf{b})$$
 $\mathbf{X}^* \leftarrow \mathbf{X}^* \boxplus \mathbf{\Delta x}$

Gauss in Non Euclidean Spaces

Beware of the + and - operators

Error function

$$\mathbf{e}_i(\mathbf{x}) = \mathbf{h}_i(\mathbf{x}) \boxminus \mathbf{z}_i$$

Taylor expansion

$$\mathbf{e}_{i}(\mathbf{X} \boxplus \mathbf{\Delta}\mathbf{x}) = \underbrace{\mathbf{e}_{i}(\mathbf{X})}_{\mathbf{e}_{i}} + \underbrace{\frac{\partial \mathbf{e}_{i}(\mathbf{X} \boxplus \mathbf{\Delta}\mathbf{x})}{\partial \mathbf{\Delta}\mathbf{x}}}_{\mathbf{J}_{i}} \Big|_{\mathbf{\Delta}\mathbf{x} = \mathbf{0}} \mathbf{\Delta}\mathbf{x}$$

Increments

$$\mathbf{X} \leftarrow \mathbf{X} \boxplus \mathbf{\Delta} \mathbf{x}$$

Algorithm (One Iteration)

Clear H and b

$$\mathbf{H} \leftarrow 0 \qquad \mathbf{b} \leftarrow 0$$

For each measurement

$$egin{array}{lll} \mathbf{e}_i & \leftarrow & \mathbf{h}_i(\mathbf{X}^*) oxplus \mathbf{Z}_i \ & \mathbf{J}_i & \leftarrow & rac{\partial \mathbf{e}(\mathbf{X}^* oxplus \mathbf{\Delta} \mathbf{x})}{\partial \mathbf{\Delta} \mathbf{x}} igg|_{\mathbf{\Delta} \mathbf{x} = \mathbf{0}} \ & \mathbf{H} & \leftarrow & \mathbf{H} + \mathbf{J}_i^T \mathbf{\Omega}_i \mathbf{J}_i \ & \mathbf{b} & \leftarrow & \mathbf{b} + \mathbf{J}_i^T \mathbf{\Omega}_i \mathbf{e}_i \end{array}$$

Compute and apply the perturbation

$$\mathbf{\Delta x} \leftarrow \operatorname{solve}(\mathbf{H}\mathbf{\Delta x} = -\mathbf{b})$$
 $\mathbf{X}^* \leftarrow \mathbf{X}^* \boxplus \mathbf{\Delta x}$

Methodology

State space X

- Qualify the Domain
- Define an Euclidean parameterization for the perturbation
- Define boxplus operator

Measurement space(s) Z

- •Qualify the Domain
- Define an Euclidean parameterization for the perturbation
- Define boxminus operator

Identify the prediction functions h(X)

MICP: State and Measurements

State
$$\mathbf{X} = [\mathbf{R}|\mathbf{t}] \in SE(3)$$

$$\mathbf{\Delta x} = (\underbrace{\Delta x \, \Delta y \, \Delta z}_{\mathbf{\Delta t}} \, \underbrace{\Delta \alpha_x \, \Delta \alpha_y \, \Delta \alpha_z}_{\mathbf{\Delta \alpha}})^T$$

$$\mathbf{X} \boxplus \mathbf{\Delta x} = v2t(\mathbf{\Delta x})\mathbf{X}$$

$$= [\mathbf{R}(\mathbf{\Delta}\alpha)\mathbf{R}|\mathbf{R}(\mathbf{\Delta}\alpha)\mathbf{t} + \mathbf{\Delta}\mathbf{t}]$$

Measurements

$$\mathbf{z} \in \Re^3$$
 $\mathbf{h}_i(\mathbf{X} \boxplus \mathbf{\Delta} \mathbf{x}) = \mathbf{R}(\mathbf{\Delta} \alpha) \underbrace{[\mathbf{R} \mathbf{p}_i + \mathbf{t}]}_{\mathbf{p}_i'} + \mathbf{\Delta} \mathbf{t}$

MICP: Error

The measurements are Euclidean, no need for boxminus

$$\mathbf{e}_{i}(\mathbf{X} \boxplus \mathbf{\Delta}\mathbf{x}) = \mathbf{h}_{i}(\mathbf{X} \boxplus \mathbf{\Delta}\mathbf{x}) - \mathbf{z}_{i}$$
$$= \mathbf{R}_{x}(\mathbf{\Delta}\alpha)\mathbf{p}'_{i} + \mathbf{\Delta}\mathbf{t} - \mathbf{z}_{i}$$

MICP: Jacobian

Linearizing around the **0** of the chart simplifies the calculations

$$\mathbf{J}_{i} = \frac{\partial \mathbf{e}_{i}(\mathbf{X} \boxplus \Delta \mathbf{x})}{\partial \Delta \mathbf{x}} \Big|_{\Delta \mathbf{x} = 0}$$

$$= \left(\frac{\partial \mathbf{e}_{i}(\cdot)}{\partial \Delta \mathbf{t}} \frac{\partial \mathbf{e}_{i}(\cdot)}{\partial \Delta \alpha} \right) \Big|_{\Delta \mathbf{x} = 0}$$

$$= \left(\frac{\partial \Delta \mathbf{t}}{\partial \Delta \mathbf{t}} \frac{\partial \mathbf{R}_{i}(\Delta \alpha) \mathbf{p}_{i}'}{\partial \Delta \alpha} \right) \Big|_{\Delta \mathbf{x} = 0}$$

$$= \left(\mathbf{I} \left[-\mathbf{p}_{i}' \right]_{\times} \right)$$

MICP: Code

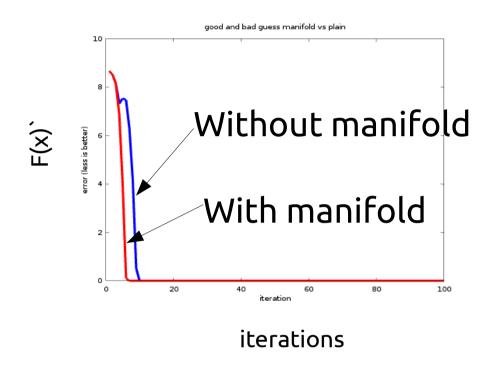
```
function T=v2t(v)
    T=eye(4);
    T(1:3,1:3) = Rx(v(4)) *Ry(v(5)) *Rz(v(6));
    T(1:3,4)=v(1:3);
endfunction;
function [e,J]=errorAndJacobianManifold(X,p,z)
   z_hat=X(1:3,1:3)*p+X(1:3,4); #prediction
   e=z hat-z;
   J=zeros(3,6);
   J(1:3,1:3) = eye(3);
   J(1:3,4:6) = skew(z hat);
endfunction
```

MICP: Code

```
function [X, chi_stats]=doICPManifold(X_guess, P, Z, n_it)
  X=X quess;
  chi stats=zeros(1,n it);
  for (iteration=1:n_it)
    H=zeros(6,6);
    b=zeros(6,1);
    chi=0;
    for (i=1:size(P,2))
      [e,J] = errorAndJacobianManifold(X, P(:,i), Z(:,i));
      H+=J'*J;
      b+=J'*e;
      chi+=e'*e;
    endfor
    chi_stats(iteration)=chi;
    dx = -H \setminus b;
    X=v2t(dx)*X;
  endfor
endfunction
```

Testing

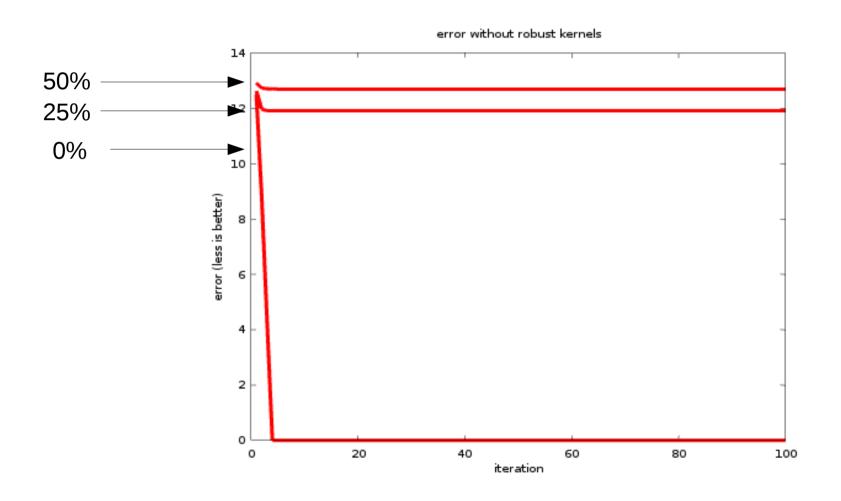
- Spawn a set of random points in 3D
- Define a location of the robot
- Compute syntetic measurements from that location
- Set the origin as initial guess
- Run ICP and plot the evolution of the error



I need about 5
 iterations to get a
 decent error

Outliers

Let's inject an increasing number of outliers



Robust Kernels

Outliers in the data due to data association result in performance loss

There will be outliers

Hint: Lessen the contribution of measurements having higher error (e.g. using Robust Kernels)

Trivial Kernel Implementation

```
If (error>threshold) {
    scale_error_so_that_its_norm_is_the_threshold();
}
```

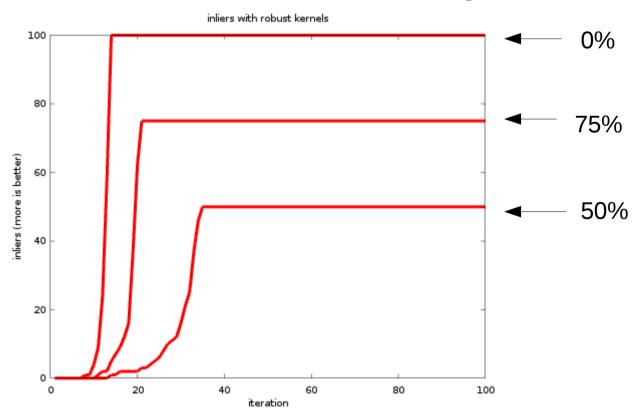
MICP with Outliers: Code

```
function [X, chi stats] = doICPManifold(X guess, P, Z, n it)
 X=X quess;
  chi stats=zeros(1,n it);
  for (iteration=1:n it)
    H=zeros(6,6);
    b=zeros(6,1);
    for (i=1:size(P,2))
      [e,J] = errorAndJacobianManifold(X, P(:,i), Z(:,i));
      chi=e'*e;
      if (chi>threshold)
        e*=sqrt(threshold/chi);
      endif;
      H+=J'*J;
      b+=J'*e;
     chi stats(iteration)+=chi;
    endfor
    dx = -H b;
    X=v2t(dx)*X;
  endfor
endfunction
```

Behavior with Outliers

Instead of measuring the F(x) we measure the number of inliers as the algorithm evolves

The closer is the estimated # of inliers to the true fraction the better is our system



Take Home Message

Gauss-Newton is a powerful tool used as building block of modern SLAM systems

It is used both within

- •front-end (like in this lecture)
- •back end (like in the next)
- In this talk we provided basics for
 - Formalizing the problem
 - Hacking a solver
 - Dealing with non-Euclidean spaces
 - Cope with some outliers

Take Home Message

Works under its assumptions, that are

- Mild measurement functions
- Decent initial guess
- •The system is observable

Some software Implementing GN

Calibration

ICP

Sparse LS