Lectures (some will be updated during the semester)

Lecture
Topics Additional material
01

dynamics - motion - mathematical model - prediction - simulation - causes of motion - linearity - time invariance - LTI (Linear-Time Invariant) system - control system examples
 updated 26/09/2024
02
LTI system signals definitions and dimensions - system as a signal transformer - abstraction - different systems same description same behavior - state - system order - Mass/Spring/Damper from higher order ODE to system of differential equations - coordinate transformation - equivalent representations - direct feed-through - examples of modeling
MIT - OCW: Signals & Systems - Lecture 1 (with video)
03
Time response - zero-input response - matrix exponential - zero-state response - total response - superposition principle - Dirac delta - impulsive response - change of coordinates

04
Linear algebra - matrices - eigenvalues/eigenvectors - characteristic polynomial - algebraic multiplicity - geometric multiplicity - diagonalization - Jordan form
Eigenvalues and eigenvectors: MIT - OCW - Lecture (with video)
Diagonalization and powers of A: MIT - OCW - Lecture (with video)
05

2-mass
example
Time domain analysis - modal decomposition - distinct eigenvalues - aperiodic and pseudoperiodic modes - parameters of the natural modes - multiple eigenvalues MIT - OCW: Differential equations and exp(At)  (video, problems & solutions)
MIT - OCW: Harmonic oscillator (text)
06

stability slides
Stability of LTI systems - definitions - Routh stability criterion - Nonlinear systems stability (slides 1-10 and 14-15 and 41-45, slides done by Prof. G. Oriolo)

07

Laplace transform - properties - application - response in the s-domain - transfer function - realizations - poles/zeros - poles vs eigenvalues
08
Zero-State system response - partial fraction decomposition

09
Step response - transient - steady-state
10
Bode diagrams
Bode diagrams summary
11
Frequency response: system as a filter - MSD system - first and second order systems - quarter-car suspension model

12 Interconnected systems: series, parallel and feedback, appearance of the hidden dynamics

13
Nyquist stability criterion, stability margins, Bode stability criterion, delay in the feedback loop

14
Preliminary examples on control - open vs closed-loop control principles - direct compensation of the disturbance

15
Specifications - steady-state and transient - frequency domain characterization

16
Loop shaping - choice of the elementary functions - basic PID

17
Performance - Sensitivity functions
18
Root locus as an analysis and design tool - Pole placement
19

Controllable and observable system - rank test - eigenvalue assignment via state feedback - observability and observer design - separation principle




Please report any typo/error

Updates chronology:



Other useful material


Matrix primer
: what you should already know on matrices (courtesy of Prof. Stephen Boyd, Stanford)



Linked material from MIT OpenCourseWare:

Dennis Freeman. 6.003 Signals and Systems. Fall 2011. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

Gilbert Strang. 18.06SC Linear Algebra. Fall 2011. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

Arthur Mattuck, Haynes Miller, Jeremy Orloff, and John Lewis. 18.03SC Differential Equations. Fall 2011. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.







Interesting links




Back to Control Systems homepage

Lanari

HOMEPAGE