
Inconsistency-tolerance in data

integration

Riccardo Rosati

Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma

Italy

2

Problem studied

• how to deal with constraint violations (conflicts) in

• databases

• data integration

• data exchange

• Semantic Web (ontology-based data access)

• peer data management

• ...

3

Very simple example

UKwww.lfcs.inf.ed.ac.uk/people/profiles/
Leonid_Libkin.html

Leonid Libkin

Canada

UK

Austria

country

HomePage

www.cs.toronto.edu/~libkinLeonid Libkin

web.comlab.ox.ac.uk/oucl/people/georg.
gottlob.html

Georg Gottlob

benner.dbai.tuwien.ac.at/staff/gottlobGeorg Gottlob

URLname

EUUK

BelongsTo

NACanada

EUAustria

continentcountry

query q: “professors teaching in Europe”

SELECT HomePage.Name

FROM HomePage, BelongsTo

WHERE

HomePage.country = BelongsTo.country

AND BelongsTo.continent = “EU”

4

Example (cont.)

• “every professor has at most one home page”

(key constraint on relation HomePage)

• instance violates this key

• we want to evaluate query q...

• ... and still obtain the answer “Georg Gottlob”

(because both home pages are hosted by European universities)

• ... while we don’t want to get the answer “Leonid Libkin” anymore

5

How to deal with conflicts?

Traditional off-line solution: material repair

• Solution 1: clean the data (before querying)

• not always possible or convenient

On-line solutions: virtual repair

• Solution 2: during query answering, use procedures/trust

policies/preferences to resolve the conflicts

• not always possible

• e.g., not enough knowledge on data provenance

6

How to deal with conflicts?

What can be done when all else fails?

• Solution 3: ask the user

• Solution 4: don’t care about conflicts (standard query evaluation)

• too brave

• in our example, we also obtain “Leonard Libkin”

• Solution 5: discard all conflicting data (tuples)

• too cautious

• in our example, we obtain no answers!

• Solution 6: use consistent query answering techniques:

• obtain meaningful answers from conflicting databases,,,

• ...through a more “intelligent” (virtual) repair of data

(declarative semantics)

7

Repairs and consistent answers

semantics of consistent query answering (CQA):

• repair = database that satisfies the constraints and is at a “minimal

distance” from the real database

• measure: number/sets of tuple insertions and/or deletions

• (different actual semantics)

• consistent answer to q = answer to q in all repairs of the

database

8

Example (consistent answers)

Canada

Austria

country

www.cs.toronto..Libkin

benner.dbai.tuwien..Gottlob

URLname

Canada

UK

country

www.cs.toronto..Libkin

web.comlab.ox.uk..Gottlob

URLname

UK

UK

country

www.lfcs.inf.ed.ac..Libkin

web.comlab.ox.uk..Gottlob

URLname

UK

Austria

country

www.lfcs.inf.ed.ac..Libkin

benner.dbai.tuwien..Gottlob

URLname

repair 4:

repair 2:

repair 3:

repair 1:
answer to q:

{Gottlob}

answer to q:

{Gottlob,Libkin}

answer to q:

{Gottlob}

answer to q:

{Gottlob,Libkin}

9

Example (consistent answers)

• “Georg Gottlob” is a consistent answer

• “Leonard Libkin” is not a consistent answer

10

Constraint violations, CWA, and OWA

CWA: data in the DB cannot be neither added nor deleted

what if we move from CWA to OWA?

• very important: many formalizations (data integration, data

exchange, ontologies) based on OWA

OWA is able to handle only some kinds of violations:

• positive example: violation of a foreign key constraint

• can be repaired by adding tuples (allowed by OWA)

• violation interpreted as incompleteness of data

• negative example: violation of a key constraint

• can be repaired only by deleting tuples (not allowed by OWA)

• violation interpreted as inconsistency of data

11

Complexity of consistent query answering

Complexity of CQA depends on:

• the constraint language

• the query language

• (the semantics)

Problem with CQA:

• the number of repairs is in general exponential in the number of

conflicting tuples

• computing consistent answers of conjunctive queries is coNP-hard

(data complexity) for many combinations of queries/constraints

• e.g., primary key constraints + conjunctive queries

12

Tractable CQA

how to deal with coNP-hardness?

identify “easy” cases

examples:

• if conflicting data are (very) few...

• (e.g., when previous data cleaning solves almost all conflicts)

... then CQA is tractable

• if (conflicting) data satisfy some locality property (so that repairs

can be efficiently factorized)...

... then CQA is tractable (Eiter, Fink, Greco, Lembo)

• if the structure of the query (w.r.t. the constraints) allows to look at

a “small” number of conflicts (independent of the size of the DB)...

... then CQA is tractable

13

Techniques for CQA

• techniques based on query rewriting:

1. given query q and constraints C, generate a query qc

2. evaluate qc over the inconsistent DB

• techniques directly accessing the data (based on the constraints)

14

CQA via query rewriting

Query

rewriter
constraints

query Q

query Q’

DBMS

Query

evaluator

15

CQA via query rewriting

• techniques based on query rewriting need a coNP-hard query

language

• usually, nonmonotonic extensions of datalog

• able to deal with very expressive queries and constraints

• datalog queries

• arbitrary “universal” constraints (e.g., EGDs, denials)

• unable to deal with general “referential” constraints (e.g.,

foreign keys, TGDs)

• not efficient (in general)

• hard to implement through relational DB technology

16

CQA via query rewriting

• are there (interesting) combinations of queries and constraints for

which CQA can be rewritten in SQL?

• yes!

• CQs with acyclic join graphs + key constraints

(Fuxman, Miller)

• extensions to other constraints

• functional dependencies (Wijsen)

• disjointness constraints (Lembo, Rosati, Ruzzi)

• extension to probabilistic databases

(Andritsos, Fuxman, Miller)

17

CQA via SQL query rewriting

Query

rewriter
constraints

query Q

query Q’ (SQL)

DBMS

18

CQA in data integration and exchange

• GAV data integration

• CQs + keys, foreign keys, disjointnesses:

nonmonotonic datalog rewriting (Calì, Lembo, Rosati)

• LAV data integration

• (Bertossi, Bravo)

• peer-to-peer data integration:

nonmonotonic datalog rewriting techniques

• (Bertossi, Bravo)

• (Calvanese, De Giacomo, Lenzerini, Lembo, Rosati)

• ontology-based data integration

• consistent instance checking for DL-Lite (Lembo, Ruzzi)

19

Systems

• CONQUER (Fuxman, Fazli, Miller)

• based on SQL rewriting

• restricted queries + constraints

• very efficient

• HIPPO (Chomicki, Marcinkowski, Staworko)

• based on compact representations of repairs (conflict

hypergraphs)

• expressive queries + constraints

• INFOMIX (Leone et al.)

• based on nonmonotonic datalog rewriting

• expressive queries + constraints + GAV mappings

• good experimental results

20

Open research issues

• semantics:

• for complex classes of constraints (e.g., keys and foreign

keys), no well-established notion of repair (different semantics

proposed)

• same for more complex systems (e.g., LAV/GLAV data

integration)

• complexity

• identification of other (more expressive) tractable

combinations of queries and constraints

• algorithms

21

Questions

• from the application/industrial side, is there a real interest for the

development of technologies for inconsistency-tolerance in data

integration and data exchange?

• e.g., are there real applications where “traditional” data

cleaning is not sufficient?

• what are the forms of inconsistency-tolerance that are more

interesting for current data integration and data exchange

applications? e.g.:

• which classes of queries and constraints?

• which semantics?

• how far is research from the development of effective methods and

techniques for inconsistency-tolerance in data integration?

22

ANSWERS?

23

Example (CQA through SQL rewriting)

query q: “professors teaching in Europe”

SELECT HomePage.Name

FROM HomePage, BelongsTo

WHERE HomePage.country = BelongsTo.country

AND BelongsTo.continent = “EU”

rewritten query:

SELECT HomePage.Name

FROM HomePage H1, BelongsTo B1

WHERE H1.country = B1.country

AND B1.continent = “EU”

AND NOT EXISTS

(SELECT * FROM HomePage H2, BelongsTo B2

WHERE H2.country = B2.country

AND B2.continent <> “EU”

AND B2.name = B1.name)

