Inconsistency-tolerance in data
integration

Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Sapienza Universita di Roma
Italy

Problem studied

* how to deal with constraint violations (conflicts) in
» databases
« data integration
e data exchange
« Semantic Web (ontology-based data access)

e peer data management

Very simple example

HomePage

name

URL country

Georg Gottlob

benner.dbai. tuwien.ac.at/staff/gottlob | Austria

Georg Gottlob

web.comlab.ox.ac.uk/oucl/people/georg. | UK
gottlob.html

Leonid Libkin www.cs.toronto.edu/~1libkin Canada
Leonid Libkin www.lfcs.inf.ed.ac.uk/people/profiles/ | UK
Leonid Libkin.html
BelongsTo query q: “professors teaching in Europe”
: SELECT HomePage.Name
countr continent

: Y FROM HomePage, BelongsTo
Austria EU WHERE
UK EU HomePage.country = BelongsTo.country
Canada NA AND BelongsTo.continent = “EU”

Example (cont.)

“every professor has at most one home page”

(key constraint on relation HomePage)

instance violates this key

we want to evaluate query q...

... and still obtain the answer “Georg Gottlob”

(because both home pages are hosted by European universities)

... while we don’t want to get the answer “Leonid Libkin” anymore

How to deal with conflicts?

Traditional off-line solution: material repair
« Solution 1: clean the data (before querying)
* not always possible or convenient

On-line solutions: virtual repair

« Solution 2: during query answering, use procedures/trust
policies/preferences to resolve the conflicts

* not always possible
* e.g., hot enough knowledge on data provenance

How to deal with conflicts?

What can be done when all else fails?
« Solution 3: ask the user
« Solution 4: don'’t care about conflicts (standard query evaluation)
« too brave
* in our example, we also obtain “Leonard Libkin”
« Solution 5: discard all conflicting data (tuples)
» too cautious
* Iin our example, we obtain no answers!
« Solution 6: use consistent query answering techniques:
« obtain meaningful answers from conflicting databases,,,

 ...through a more “intelligent” (virtual) repair of data
(declarative semantics)

Repairs and consistent answers

semantics of consistent query answering (CQA):

* repair = database that satisfies the constraints and is at a “minimal
distance” from the real database

» measure: number/sets of tuple insertions and/or deletions
 (different actual semantics)

« consistent answer to q = answer to q in all repairs of the
database

Example (consistent answers)

repair 1:

repair 2:

repair 3:

repair 4.

name URL country
Gottlob | benner.dbai.tuwien.. | Aystria
Libkin www.cs.toronto. . Canada
name URL country
Gottlob | benner.dbai.tuwien.. | Aystria
Libkin www.lfecs.inf.ed.ac.. | UK
name URL country
Gottlob | web.comlab.ox.uk.. UK
Libkin www.cs.toronto. . Canada
name URL country
Gottlob | web.comlab.ox.uk.. UK
Libkin www.lfecs.inf.ed.ac.. | UK

answer to q:
{Gottlob}

answer to Q:
{Gottlob,Libkin}

answer to q:
{Gottlob}

answer to Q:
{Gottlob,Libkin}

Example (consistent answers)

« "Georg Gottlob” is a consistent answer
 “Leonard Libkin” is not a consistent answer

Constraint violations, CWA, and OWA

CWA: data in the DB cannot be neither added nor deleted

what if we move from CWA to OWA?

« very important: many formalizations (data integration, data
exchange, ontologies) based on OWA

OWA is able to handle only some kinds of violations:
« positive example: violation of a foreign key constraint
« can be repaired by adding tuples (allowed by OWA)
* violation interpreted as incompleteness of data
* negative example: violation of a key constraint
« can be repaired only by deleting tuples (not allowed by OWA)
 violation interpreted as inconsistency of data

10

Complexity of consistent query answering

Complexity of CQA depends on:
« the constraint language

« the query language

* (the semantics)

Problem with CQA:

« the number of repairs is in general exponential in the number of
conflicting tuples

« computing consistent answers of conjunctive queries is coNP-hard
(data complexity) for many combinations of queries/constraints

* e.g., primary key constraints + conjunctive queries

11

Tractable CQA

how to deal with coNP-hardness?
identify “easy” cases

examples:
« if conflicting data are (very) few...
* (e.g., when previous data cleaning solves almost all conflicts)
... then CQA is tractable
« if (conflicting) data satisfy some locality property (so that repairs
can be efficiently factorized)...
... then CQA is tractable (Eiter, Fink, Greco, Lembo)

« if the structure of the query (w.r.t. the constraints) allows to look at
a “small” number of conflicts (independent of the size of the DB)...

... then CQA is tractable

12

Techniques for CQA

« techniques based on query rewriting:
1. given query q and constraints C, generate a query q.
2. evaluate qg. over the inconsistent DB

» techniques directly accessing the data (based on the constraints)

13

CQA via query rewriting

Query
rewriter

query Q’

Query
evaluator

l

4>
DBMS

CQA via query rewriting

techniques based on query rewriting need a coNP-hard query
language
usually, nonmonotonic extensions of datalog
able to deal with very expressive queries and constraints
« datalog queries
« arbitrary “universal” constraints (e.g., EGDs, denials)

« unable to deal with general “referential” constraints (e.g.,
foreign keys, TGDs)

not efficient (in general)
hard to implement through relational DB technology

15

CQA via query rewriting

 are there (interesting) combinations of queries and constraints for
which CQA can be rewritten in SQL?

* yes!
« CQs with acyclic join graphs + key constraints
(Fuxman, Miller)

« extensions to other constraints
 functional dependencies (Wijsen)
« disjointness constraints (Lembo, Rosati, Ruzzi)

» extension to probabilistic databases
(Andritsos, Fuxman, Miller)

16

CQA via SQL query rewriting

Query
rewriter

query Q' (SQL)

DBMS

CQA in data integration and exchange

GAV data integration

« CQs + keys, foreign keys, disjointnesses:

nonmonotonic datalog rewriting (Cali, Lembo, Rosati)

LAV data integration

» (Bertossi, Bravo)
peer-to-peer data integration:
nonmonotonic datalog rewriting techniques

» (Bertossi, Bravo)

« (Calvanese, De Giacomo, Lenzerini, Lembo, Rosati)
ontology-based data integration

« consistent instance checking for DL-Lite (Lembo, Ruzzi)

18

Systems

« CONQUER (Fuxman, Fazli, Miller)
« based on SQL rewriting
 restricted queries + constraints
 very efficient
« HIPPO (Chomicki, Marcinkowski, Staworko)
* based on compact representations of repairs (conflict
hypergraphs)
» expressive queries + constraints
 INFOMIX (Leone et al.)
« based on nonmonotonic datalog rewriting
* expressive queries + constraints + GAV mappings
e good experimental results

19

Open research issues

* semantics:

« for complex classes of constraints (e.g., keys and foreign

keys), no well-established notion of repair (different semantics
proposed)

« same for more complex systems (e.g., LAV/GLAV data
integration)

« complexity

* identification of other (more expressive) tractable
combinations of queries and constraints

 algorithms

20

Questions

« from the application/industrial side, is there a real interest for the
development of technologies for inconsistency-tolerance in data
integration and data exchange?

* e.g., are there real applications where “traditional” data
cleaning is not sufficient?

» what are the forms of inconsistency-tolerance that are more
interesting for current data integration and data exchange
applications? e.g.:

» which classes of queries and constraints?
« which semantics?

* how far is research from the development of effective methods and
techniques for inconsistency-tolerance in data integration?

21

ANSWERS?

22

Example (CQA through SQL rewriting)

query q: “professors teaching in Europe”
SELECT HomePage.Name
FROM HomePage, BelongsTo
WHERE HomePage.country = BelongsTo.country
AND BelongsTo.continent = “EU”

rewritten query:

SELECT HomePage.Name

FROM HomePage H1, BelongsTo B1

WHERE H1.country = B1.country

AND B1.continent = “EU”

AND NOT EXISTS
(SELECT * FROM HomePage H2, BelongsTo B2
WHERE H2.country = B2.country
AND B2.continent <> “EU”
AND B2.name = B1.name)

23

