
Data Management (A.A. 2023/24) – exam of 05/06/2024

Solutions

Problem 1 A transaction T is called eager if all its requests for an exclusive lock appear just after the
“begin” action of T (and, therefore, before every other action of T ). A lock-based scheduler with both
shared and exclusive locks is called disciplined if it behaves like a 2PL scheduler with the only difference
that it aborts all the transactions that are not eager.

1.1 Show a schedule that is accepted by the 2PL scheduler (with both shared and exclusive locks) and is
not accepted by a disciplined scheduler.

1.2 Prove or disprove that a disciplined 2PL sheduler can avoid to deal with deadlock management.

Solution 1

1.1 We adopt the classical notion of “schedule accepted by a scheduler (in this case, a disciplined sched-
uler)”: S is accepted by a disciplined scheduler D if, given S in input to D, the output produced by
D is exactly S.

We could even show a schedule with just one transaction where exclusive locks are asked after some
actions and therefore is not eager, but we prefer to show a more interesting schedule, one without lock
operations. The following schedule

w1(x)w2(y)w1(y)

is obviously accepted by the 2PL scheduler (with both shared and exclusive locks), but is not accepted
by a disciplined scheduler, because either transaction 1 is not eager and is therefore aborted by the
disciplined scheduler, or transaction 1 is eager and acquires the exclusive lock both on x and y, thus
forcing transaction 2 to be put in a waiting stage (and resuming when transaction 1 ends) when trying
to execute w2(y).

1.2 We disprove that a disciplined 2PL sheduler can avoid to deal with deadlock management by consid-
ering the following schedule S:

w2(y)w1(x) r1(y) r2(x).

It is easy to see that we can add lock commands to S to make all transactions eager and to make
S following the 2PL protocol. At the same time it is also easy to see that a deadlock occurs when
a disciplined scheduler processes S, because r1(y) must wait for transation 2 to release the exclusive
lock on y and at the same time r2(x) must wait for transation 1 to release the exclusive lock on x.
This implies that a disciplined scheduler cannot avoid dealing with deadlock management.

Problem 2 Consider the relations R(A,B) and S(B,C), where the attributes forming the key are underlined.
Each of them is stored in a heap with 1.000 pages. We have to compute the equi join of R and S on the
condition R.B = S.B, knowing that we have M free frames available in the buffer. For the two cases of
M = 3 and M = 32, answer the following questions. (2.1) Is the block-nested loop applicable? If the answer
is negative, provide a motivation; if the answer is positive, illustrate the algorithm and tell which is its cost
in terms of number of page accesses. (2.2) Illustrate what you think is the most efficient algorithm, and tell
which is its cost in terms of number of page accesses.

1



Solution 2

α) Let us consider the case where M = 3.

2.1 The block-nested loop algorithm (which, in this case, coincides with the page-based nested loop)
for the equi-join is always applicable and the cost in this case is B(R)+⌈B(R)/(M−2)⌉×B(S) =
1.000 + ⌈1.000/1⌉ × 1.000 = 1.001.000.

2.2 In this case, the simple sort join and the multi-pass merge-sort join behave in the same way.
Either one of them is the most efficient algorithm: we sort the two relations using 3 frames, and
then we compute the join by a “merging step”. The cost is 2 × 1.000 × log21000 + 2 × 1.000 ×
log21000 + 2.000 = 42.000.

β) Let us consider the case where M = 32.

2.1 The block-nested loop algorithm for the equi-join is always applicable and the cost in this case is
B(R) + ⌈B(R)/(M − 2)⌉ ×B(S) = 1.000 + ⌈1.000/30⌉ × 1.000 = 35.000.

2.2 Since the attribute B is a key for R, we do not have the problem of too large joining fragments
for the two relations. It follows that the most efficient algorithm is the multi-pass merge-sort
join algorithm: we (iteratively) produce a number of sorted sublists less than or equal to M − 2
using K passes, and then we compute the join by a “merging step”. Since 32 × 31 < 2.000 and
32 × 31 × 31 > 2.000, we need K = 3 passes for producing the sorted sublists. Therefore, the
cost is 4 × 1.000 + 4 × 1.000 + 2.000 = 10.000. Note that the cost of the simple sort join is
6× 1.000 + 6× 1.000 + 2.000 = 14.000.

Problem 3 Consider the relations R(A,B,C,D,E,F) and S(A,B,G,H), where R contains 260.000 tuples (20
tuple per page), R contains 1.000 distinct values uniformly distributed in the integer attribute A, there is
a hash-based index for S on the integer attribute A, there is a B+-tree index for R on attribute A, and the
buffer has 205 free frames available. Consider the query type Q (where x and y are integer constants):

select A,B from R where A ≥ x and A < x + 20

union

select A,B from S where A = y

for which we remind the reader that the SQL union operator performs the union of two sets (or bags) by
eliminating duplicates in the result. Illustrate the algorithm you would use to answer queries of type Q, and
tell which is the cost of the algorithm in terms of number of page accesses.

Solution 3
We present the solution assuming the “worst case” scenario for the B+-tree index for R: unclustering, dense
and using alternative 2. Note, however, that other assumptions are also perfectly acceptable. Let us first
count the number of leaves of the tree and its fan-out. Since 20 tuples of R fit in one page, we assume that
120 values fit in one page, which means that 120/2 = 60 data entries (and, analogously, 60 index entries) fit
in one page. Taking into account the 67% rule, every leaf contains 40 data entries; also, since (30 + 60)/2
= 45, we assume 45 to be the fan-out of the tree. Since the total number of data entries to store in the
leaves is 260.000, the number of leaves is 260.000 / 40 = 6.500. How many leaves we should access? Since
R contains 1.000 distinct values uniformly distributed in the integer attribute A, we conclude that for every
value of A there are 260.000/1.000 = 260 tuples of R with that value in A, and since we have to consider
20 values in the range appearing in the condition of the query, we have 260 × 20 = 5.200 data entries to
consider, corresponding to 5.200/40 = 130 relevant leaves to access and, in the worst case, 5.200 pages (one
for each data entry) of R to access.

The algorithm is as follows. We first use the hash-based index for loading in one frame of the buffer the
tuple t (if any) of S with A = y. We then use the B+-tree index for R to get to the first leaf satisfying the

2



condition A = x and we scan the 130 relevant leaves of the index for accessing all data entries satisfying the
condition A < x + 20, and for each such data entry we access the page of R with the right tuple and store
the pair ⟨A,B⟩ of such tuple in the buffer, if it is different from all the pairs appearing in the buffer. Note
that in the worst case we have to store 5.200 pairs in the buffer; since 120 values fit in one page, 60 pairs
fit in one frame of the buffer, and therefore in the worst case we need 5.200/60 = 87 frames in the buffer,
which is much less than the 205 frames available. At the end, we copy to the output all the tuples stored in
buffer.

As for the cost, we count 1 access for the use of the hash-based index, log45 6.500 = 3 accesses for reaching
the first leaf, 130 pages for accessing the relevant leaves and finally 5.200 pages for retrieving the tuples of
R. The cost is therefore 5.334 page accesses.

As we said before, other assumptions for the B+-tree index for R are acceptable, in particular, assuming
the index clustering and sparse. With this assumption, which implies the arbitrary assumption that R is
sorted on A, the algorithm is similar, but requires a smaller number of page accesses.

Problem 4 Consider the relations R(A,B,C) and S(A,B,C), where (i) R has ⟨A,B,C⟩ as the key and
contains 100.000 tuples stored in a heap with 1.000 pages; (ii) S contains 12.000 tuples stored as a heap of
120 pages. Our buffer has 100 free frames available, and we have to compute the difference between R and S

(i.e., R - S), with the goal of maximizing efficiency, obviously in terms of number of page accesses. Illustrate
the algorihm you would choose and tell which is its cost in terms of number of page accesses.

Solution 4
Since we cannot apply the one-pass algorithm, the most obvious algorithm to think of is the two-pass

algorithm based on sorting: we produce 2 sorted sublists for S and 10 sorted sublists for R and then we
execute the “merging pass” to compute the bag difference. This algorithm costs 3× (1.000 + 120) = 3.360.

However, it is worth asking whether this is really the most efficient method. Obviously the two-pass
algorithm based on hashing would be an option, but it has the same cost. One could think that there is
no other method that could be considered. However, notice that the number of pages of S is small and
therefore it is worth checking if the block-nested loop can be applied and which is its cost. We remind the
reader that the block-nested loop cannot be used for computing the difference between two bags. However,
in our case, the first operand (R) has a key, and therefore, is a set, not a bag. This implies that no tuple
of R can appear in two different blocks, and therefore the block-nested loop can be used. The cost of the
block-nested loop algorithm in this case is 1.000 + ⌈1.000/98⌉ × 120 = 2.320, which is lower than the one of
the two-pass algorithm based on sorting. So, the most efficient algorithm is the block-nested loop.

Problem 5 (only for students who do not do the project)
Let B be a relational database with relations Agency(id,nation), Travel(tcode,agencyid,duration),
Visit(tcode,citycode), Participate(tcode,person), Likes(person,citycode), where (i) each travel
agency is located in a nation, (ii) each travel is offered by an agency, has a duration, includes a set of at
most 10 cities to visit (relation Visit) and accepts at most 50 participants (relation Participate); (iii)
each person likes a set of at most 20 cities (relation Likes).

5.1 Describe how would you organize a property graph database G in order to represent the relational
database B. In particular, (i) specify how nodes, edges, labels, etc. of G are used in order to capture
the information stored in the tables of B and (ii) choose a few tuples for the relations in B, and show
the specific property graph database G obtained by applying the chosen representation method.

5.2 Consider the query Q on the property graph database that, given the tcode of a specific travel T ,
returns every person who participates to T and likes at least one city visited by T . Choose one of the
following questions and answer it. (i) Assuming the graph database organized as decided for point
(5.1), formulate the query on such graph database using a Cypher-like syntax. (ii) Assuming that
every page of our system contains 1.000 values and there are 10 free buffer frames, illustrate a possible

3



algorithm that the graph database system can use to answer the query and tell which is its cost in
terms of number of page accesses.

Solution 5

5.1 The following is a possible organization: every tuple of Agency is represented by a node labeled Agency,
with id and nation as properties. Every tuple of Travel is represented by a node labeled Travel with
properties tcode and duration. We also have nodes labeled Person (with property name), and nodes
labeled City (with property citycode). For every tuple of Travel with tcode t and agencyid a, we
also have an edge labeled OfferedBy from the node corresponding to t to the node corresponding to
a. For every tuple of Visit with tcode t and citycode c, we have an edge labeled Visit from the
node corresponding to t to the node corresponding to c. For every tuple of Participate with tcode

t and person p, we have an edge labeled Participate from the node corresponding to t to the node
corresponding to c. Finally, for every tuple of Likes with person p and citycode c, we have an edge
labeled Participate from the node corresponding to t to the node corresponding to c.

As an example, the following relational database

Agency(a,n)

Travel(t,a,d)

Visit(t,c)

Participate(t,p1)

Participate(t,p2)

Likes(p1,c)

is represented by the following property graph database (where we indicate inside the node both the
identifier of the node and its properties):

OfferedBy

a
[id: a,

nation: n]

c
[citycode: c]

Agency

t
[tcode: t,

duration: d]

Travel
Visit

Likes

Person

Person
p2

[name: n2]

p1
[name: n1]

City

Participate

Participate

5.2.i Assuming that the code of the travel T we are interested in is 123, the query can be expressed by the
following Cypher expression:

4



MATCH (x:Travel) -[Participate]-> (y:Person) -[Likes]-> (z:City)

WHERE x.tcode=123 AND (x) -[Visit]-> (z)

RETURN x

5.2.ii To answer the question we have to decide about the representation method in secondary storage for
the graph. We choose to follow the method based of adiacency lists, stored in secondary storage. Since
a node in a graph plays the role a tuple in a relational database, we make the usual assumption that
to every node n an identifying pair ⟨pageid,slotaddress⟩ is associated, specifying the page and the
slot address within the page where the data about n reside. In other words, such pair is used as an
identifier of the node. The fields of the slot are the identifier of the node n, its properties, and the
information about the outgoing edges. In particular, every edge outgoing from n is represented as
a pointer to the target node together with the possibile properties of the edge, where the pointer is
again an identifying pair ⟨pageid,slotaddress⟩. The collection of such pointers (each one together
with the properties of the corresponding edge, form the adiacency list associated to n.

A possible algorithm for answering query Q is as follows.

1. Knowing the node nT corresponding to the travel T , we know the page id of the page P where the
node is stored. We access P and we load into one frame F1 all the node id of nT and the pointers
corresponding to all its outgoing edges). Note that the pointers corresponding to the outgoing
edges labeled Visit are at most 10 and the pointers corresponding to the outgoing edges labeled
Participate are at most 50. Therefore, we have to store the id of nT and 60 pointers, that fit
perfectly in F1.

2. We use a frame F2 to load, one by one, the pages whose id are stored in F1 in the pointers
corresponding to the edges labeled Participate (at most 50). Consider one such page Ps, say
corresponding to edge e whose target is person s and note that Ps contains at most 20 pointers
to node labeled City corresponding to the cities liked by s. We compare all such pointers to the
pointers corresponding to the edges labeled Visit outgoing fro nT stored in frame F1: if at least
one of them appears in F1, we put s in the output, otherwise we ignore it.

Obviously, 10 frames are sufficient for the above algorithm. As for the cost of the algorithm, we count
the page accesses as follows: 1 page access for step 1 and 50 page accesses for step 2. The total number
of accesses is therefore 60.

5


