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Abstract—Multirobot systems (MRS) are, nowadays, an impor-
tant research area within robotics and artificial intelligence and a
growing number of systems have recently been presented in the
literature. Since application domains and tasks that are faced by
MRS are of increasing complexity, the ability of the robots to co-
operate can be regarded as a fundamental feature. In this paper,
we present a survey of the recent work in the area by specifically
examining the forms of cooperation and coordination realized in
the MRS. In particular, we propose a new taxonomy for classifi-
cation of the approaches to coordination in MRS and we describe
some systems, which we consider representative in our taxonomy.
We finally discuss the outcomes of our analysis and try to highlight
future trends of the research on MRS.

Index Terms—Coordination, multirobot systems.

I. INTRODUCTION

MULTIROBOT systems (MRS) have been proposed in the
last decade in a variety of settings and frameworks, pur-

suing different research goals, and successfully applied in many
application domains. Special attention has been given to MRS
developed to operate in dynamic environments, where uncer-
tainty and unforeseen changes can happen due to the presence
of robots and other agents that are external to the MRS itself.

Generally speaking, an MRS can be characterized as a set of
robots operating in the same environment. However, robotic sys-
tems may range from simple sensors, acquiring and processing
data, to complex human-like machines, able to interact with the
environment in fairly complex ways. Moreover, it is not easy to
give a definition of the level of autonomy that is required for a
robot in order to be considered an entity acting in the environ-
ment, as opposed to a simple machine that provides services to
the operator (a printer or a even a light switch). While we dis-
cuss several different settings of MRS, we primarily focus on
fairly complex mobile platforms, equipped with sophisticated
sensors and actuators, able to execute complex tasks. We can
further characterize the subset of MRS, that is addressed in the
present work, by considering the following three main aspects.

1) the rationale for the design of the MRS;
2) the basic functionalities and technologies (both hardware

and software) used in the MRS development;
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3) the tasks that the robots should perform and the intended
application domains.

In the sequel we explain and discuss each of these characteristics
in further details.

A significant body of work on MRS has been originated from
motivations that are essentially of engineering nature, where
MRS are designed and realized in order to improve the effec-
tiveness of a robotic system. From an engineering standpoint,
the MRS can improve the effectiveness of a robotic system ei-
ther from the viewpoint of the performance in accomplishing
certain tasks, or in the robustness and reliability of the system,
which can be increased by modularization [1]. In fact, MRS are
useful not only when the robots can accomplish different func-
tions, but also when they have the same capabilities [2]. More-
over, even when a single robot can achieve the given task, the
possibility of deploying a team of robots can improve the perfor-
mance of the overall system. Another significant development
of MRS stems from the studies on biological systems or com-
plex models arising in cognitive science and economics (see for
example [3]). In this work we take an engineering perspective,
although we also look at a few biologically inspired approaches.

Technological improvements both in the hardware and in
the associated software are two of the key reasons beyond the
growing interest in MRS [4], [5]. The increased availability of
complex sensor devices and robotic platforms in the research
laboratories favored their development and customization,
resulting in robots equipped with reliable and effective hard-
ware that improves their basic capabilities (laser range finders,
cameras, infrared sensors, robotic arms, gripping devices etc.).
In addition, the software techniques developed for the robotic
applications take advantage of the hardware improvements and
provide complex and reliable solutions for the basic tasks that a
robot should be able to perform, while acting in real world en-
vironments: localization, path planning, object transportation,
object recognition and tracking, etc. Although several problems
faced in single robot applications are not solved in a general and
effective way, under specific assumptions, some of them can
be tackled reliably. Moreover, the effectiveness of a solution
to a single robot task could be, in some cases, improved using
coordination among several robotic agents [6]–[8]. Therefore,
the study and development of MRS applications is particularly
relevant and significant at this stage.

MRS are well suited for several application domains, which
require complex coordinated tasks to be performed. For ex-
ample, in [9] a MRS is used for large scale assembly tasks.
Several kinds of MRS have been used in hostile and dangerous
environments: in the FIRE project [10], a team of intelligent
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heterogeneous robots is involved in the exploration of plan-
etary surfaces inaccessible to humans, while in the SDR and
CENTIBOTS projects [11], [12], a large team of robots (one
hundred robots) should autonomously patrol a building for an
entire day. Finally, MRS have been applied in victims search
and rescue after large scale disasters [13]. A significant boost
to the work on MRS has recently been given also by robotics
competitions, such as AAAI robotic contests1 and RoboCup2

[14]. In fact, the design and the realization of MRS is regarded
as one of the major scientific challenges and robotic contests
are extremely useful for comparing and analyzing different
strategies and techniques by providing a common test-bed for
experiments. Moreover, these competitions offer new chal-
lenges in the design of MRS: for example in the RoboCup
soccer domain, as compared with other domains for MRS, the
environment is highly dynamic and includes an opponent team.

Even considering only the subset of MRS we are addressing,
a common framework for the technical solutions that are being
developed for MRS is difficult to identify. Moreover, a MRS
cannot be simply regarded as a generalization of the single robot
case and the proposed approaches need to be precisely charac-
terized in terms of assumptions about the environment and in
terms of the internal system organization [15], [16]. Neither can
a MRS be simply considered as a special case of a multiagent
system (MAS), because of the issues arising when dealing with
a physical environment, such as uncertainty and incompleteness
on information acquired from the environment. In fact, the need
to cope with the acquisition of knowledge from a real environ-
ment, makes the experimental evaluation of MRS much more
challenging. In addition, the forms of cooperation used in MRS
need to take into account the uncertainty, the limitations, and
the mistakes arising from the processing of sensor information.
The large amount of work in MRS has been the subject of a few
survey papers that provide interesting characterizations and per-
spectives of the research in the area. In [3], several dimensions
for characterizing a MRS are proposed, while in [2], a classifi-
cation of MRS, that is more focused on the communication and
computation aspects, is presented. In [17] an introduction to the
field of MAS and MRS is presented, along with a conceptual
framework to organize the possible systems, while the research
topics in the MRS field are discussed in [5].

Although cooperation and coordination are central in many
works on MRS and they are addressed in the above cited sur-
veys, a detailed analysis that specifically looks at these aspects
can be interesting in at least two respects. First, the complexity
of the systems and of the application domains requires more
and more sophisticated forms of coordination. Consequently, a
systematic analysis of the proposals that appeared in the recent
literature can help the designer of MRS to choose the approach
to coordination that is best suited for the application at hand.
Second, focusing on coordination it is possible to further ana-
lyze the relationship between MAS and MRS: highlighting dif-
ferences and similarities between the two can lead to new in-
sights that stem from the cross fertilization of the two fields.

1See for example http://www.aaai.org.
2See http://www.robocup.org/.

The aim of this paper, which is an extended and revised ver-
sion of [18], is to address the most recent developments of MRS
by classifying the proposed approaches, specifically focusing on
the coordination aspects of the MRS. To this end, we present a
new taxonomy for classifying MRS approaches to coordination
and a set of system dimensions that address those aspects of
the system organization that influence coordination: team size,
team composition, communication and architecture. Moreover,
we identify the tasks that are faced by MRS in various appli-
cation domains. Based on the above sketched framework, we
provide a precise and fine classification of a large body of re-
cent works in the field and discuss the trends of the research on
MRS.

The remainder of the paper is organized as follows: in Sec-
tion II we present the taxonomy we propose for classifying the
approaches to coordination in MRS; in Section III we give an
overview of typical tasks and application domains for MRS; in
Section IV we describe several works in MRS and classify them
according to our taxonomy; finally, in Section V we discuss the
trends emerging in this research field.

II. TAXONOMY FOR MRS

As already remarked there are several motivations for ad-
dressing the design of MRS and, consequently, the work in this
area can be classified from several points of view. Our main mo-
tivation is the study and evaluation of the ability to take advan-
tage of coordination to improve system performance. Therefore,
the classification we propose is focused on the coordination as-
pects and thus inspired by the relationships with the field of
multi-agent systems (MAS).

In order to provide a classification of recent works on MRS,
we first propose a new taxonomy and then put it in perspective
with respect to other classifications and recent surveys on MRS.
Following the literature, we use the term dimension to refer to
specific features that are grouped together in the classification.

The taxonomy we propose for classifying the works on MRS
is characterized by two groups of dimensions: coordination
dimensions and system dimensions. Generally speaking, the
former aim at characterizing the type of coordination that
is achieved in the MRS, while the latter include the system
features that influence team development. More specifically, for
the coordination dimensions of our taxonomy, a hierarchical
structure is given in Fig. 1.

For a suitable classification of the works it is important to
clearly define the dimensions that are used. In the following of
this section we define our classification dimensions and discuss
the main differences that arise when we consider MRS instead
of MAS.

Cooperation Level: The first level is concerned with the
ability of the system to cooperate in order to accomplish a spe-
cific task. At the cooperation level we distinguish cooperative
systems from not cooperative ones. A cooperative system is
composed of “robots that operate together to perform some
global task” [19]. In this work we are interested only in coop-
erative MRS. Therefore, in the following, the term MRS will
refer to a team of cooperative robots. This notion of cooperation
is very similar to the ones used for MAS; however, in MAS,
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Fig. 1. MRS taxonomy.

cooperation is often compared and merged with competition,
which, up to now, has received little attention in the recent
works on MRS. A remarkable exception is the work [20] where
a free market based approach is used to coordinate multiple
robots (see Section IV for further details).

Knowledge Level: The second level of the proposed hierar-
chical structure is concerned with the knowledge that each robot
in the team has about its team mates. Aware robots have some
kind of knowledge of their team mates, while unaware robots
act without any knowledge of the other robots in the system. The
interest in cooperating unaware MRS (that is not as common in
MAS) is motivated from an engineering point of view by the
simplicity of such systems, with respect to aware ones. Observe
also that the notion of knowledge is not equivalent to communi-
cation: in fact, using a communication mechanism does not en-
tail awareness and vice versa, a MRS can be aware even though
there is no direct communication among the robots.

Coordination Level: The third level is concerned with the
mechanisms used for cooperation. Following the literature on
MAS [21], we consider coordination as cooperation in which
the actions performed by each robotic agent take into account
the actions executed by the other robotic agents “in such a way
that the whole ends up being a coherent and high-performance
operation.” However, there are different ways a robot can take
into account the actions of the other members of the team. The
underlying feature is the coordination protocol, that is defined
as a set of rules that the robots must follow in order to interact
with each other in the environment. Therefore, we can further
classify the coordinated MRS based on the type of coordination
protocol. We consider strong (weak) coordination as a form of
coordination that relies (does not rely) on a coordination pro-
tocol. A difference with MAS, is that the approaches based on
weak coordination are more commonly adopted in MRS, since
on physical robots the effective use of a coordination protocol
may be difficult.

Organization Level: The fourth level of our hierarchical
structure is concerned with the way the decision system is
realized within the MRS. The organization level introduces
a distinction in the forms of coordination, distinguishing
centralized approaches from distributed ones. A precise char-

acterization of this issue is given for example in [22], where
distribution is regarded as the autonomy of each component in
the system to take decisions about the actions to perform. In
particular, a centralized system has an agent (leader) that is in
charge of organizing the work of the other agents; the leader
is involved in the decision process for the whole team, while
the other members can act only according to the directions of
the leader. On the other hand, a distributed system is composed
of agents which are completely autonomous in the decision
process with respect to each other; in this class of systems a
leader does not exist. The classification of centralized systems
can be further refined depending on the way the leadership of
the group is played. Specifically, strong centralization is used to
characterize a system in which decisions are taken by the same
predefined leader agent during the entire mission duration,
while in a weakly centralized system more than one agent is
allowed to take the role of the leader during the mission.

Along with the classification introduced to characterize the
form of coordination, there are a number of system features that
are relevant to the development of the system. We have grouped
them in the system dimensions, which include: communication,
team composition, system architecture and team size.

Communication: Cooperation among robots is often ob-
tained by a communication mechanism that allows the robots
to exchange messages. A detailed analysis of the various
technical problems related to communication in MAS is given
for example in [21]. However, when MRS are considered the
communication mechanisms are very different; in addition
most of the MRS that we consider in this article operate with
a limited number of robots (i.e., less than ten), except for a
few recent projects for large-scale MRS that take into account
about 100 robots, while in large-scale MAS the number of
agents can often be in the order of 10 000–100 000. These
observations show that communication issues have, in general,
different characteristics for MAS and MRS. Therefore, even
though it is possible to have a more precise characterization of
communication systems (e.g., regarding topology, range, and
bandwidth as studied in [2]), in the taxonomy proposed in this
paper we distinguish two different types of communication
depending on the way the robots exchange information: direct
or indirect communication. Direct communication makes use
of some on board dedicated hardware device, while indirect
communication makes use of stigmergy. 3 The fact that in MRS
direct communication is based on a dedicated physical device,
results in a much more expensive and unreliable solution to
attain coordination with respect to MAS. Therefore, indirect
communication has received particular attention in MRS liter-
ature, to cut implementation and design costs. While in MAS
direct communication has been extensively used, remarkable
exceptions such as [24] support stigmergic communication, to
guarantee locality of interactions and avoid synchronization
procedures among agents (see Section IV for further details).

Team Composition: According to team composition MRS
can be divided in two main classes, heterogeneous and homo-
geneous (see for example [25]). Homogeneous teams are com-

3Stigmergy is a term coined by the biologist P. Grassé which means to incite
work by the effect of previous work [23]. Here, stigmergic communication refers
to the sharing of information through modifications in the environment.
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posed of team members that have exactly the same hardware and
control software, while in heterogeneous teams the robots differ
either in the hardware devices or in the software control proce-
dures. This distinction is used also for MAS, but in that case the
differences are obviously only in the software implementation
of the agents’ behaviors.

System Architecture: System architecture is an important
feature for classifying MRS as well as MAS. In this paper
we always refer to the architecture of the whole MRS and
not to the architecture of the single robotic agent. A precise
characterization of MRS with respect to reactive or deliber-
ative architectures is presented in [26]. We consider a team
architecture as deliberative if it allows the team members to
cope with the environmental changes by providing a strategy to
reorganize the overall team behaviors. On the other hand, in re-
active team architectures each robot in the team copes with the
environmental changes by pursuing an individual approach to
reorganize its own task in order to accomplish the goal assigned
to it. The main difference between deliberative and reactive
team architectures relies on the different approaches adopted
by the MRS to recover from an unpredicted situation: in a
deliberative MRS a long term plan involving the usage of all the
available resources to collectively accomplish a global goal is
provided; in a reactive MRS a plan to cope with the problem at
hand is provided by the robotic agent directly involved with it.

Team Size: The team size is an important issue for MAS
and it is becoming a relevant issue also in MRS development,
actually a number of recent works explicitly address large
scale MRS [11], [12]. However, the number of robots acting
in the same environment is still quite limited with respect
to the number of agents in a MAS. Therefore, rather than a
quantitative measure of the size of the MRS in our taxonomy
we distinguish those approaches that explicitly consider as a
design choice the opportunity to deal with a large number of
robots.

A. Related Work

In the recent literature there are few works that overview and
classify the research on MRS [2], [3], [5], [27]. Besides being
focused on the most recent developments in the field, the present
work aims at providing a novel perspective by focusing on the
coordination capabilities of the MRS.

The classification presented by Cao et al. [3] is the closest
to ours, since some of the aspects that are relevant to coordina-
tion are considered in their taxonomy. In particular, they are re-
ferred to as group architecture: centralization/decentralization
of the coordination approach, differentiation among the team
composition, communication infrastructure, and knowledge of
the other agents. Not only do we further distinguish between
coordination and system dimensions, we provide for a more re-
fined analysis of the coordination aspects in the coordination
dimensions. On the other hand, we do not take into account
other dimensions such as origin of cooperation and geometric
problem. As for resource conflict, if the resource is the space in
which the robots operate, then all the works on MRS implic-
itly face this problem by providing different solutions. How-
ever, when the modality for accessing a shared resource be-
comes more complex, a coordination protocol and a distributed

solution is usually preferred. In fact, there are few works explic-
itly addressing this issue, some of them are described in Sec-
tion IV-F.

The work of Dudek et al. [2], [27] presents a different and
rather complementary classification. In particular, the issue of
communication is considered in detail with the three dimensions
communication-range, communication-topology, and commu-
nication-bandwidth. In this paper, we do not explore in detail
the communication structure, but we consider the issue of com-
munication by simply distinguishing between implicit and ex-
plicit communication, which is most relevant to the kind of MRS
dealt with in this article. Specifically, we adopt an abstraction of
the communication channel, since it is convenient to decouple
the communication layers from the coordination capabilities.
We refer the reader to the cited papers [2], [27] for a detailed
discussion of the impact of the communication capabilities on
the system. Another difference with respect to our work is that,
as previously mentioned, our focus is on engineering applica-
tions for MRS, and thus we do not consider in detail issues such
as collective reconfigurability, which are more relevant to bio-
logically inspired MRS or processing ability, that refers to the
architecture of the computing system used in each single agent.

A work that takes into account the issues of coordination both
in MAS and MRS is [17]. This work also introduces some of our
system dimensions like team composition and communication,
however it is mostly focused on machine learning techniques
for MAS and MRS. In fact, due to the inherent complexity of
MRS, machine learning is an issue of great interest [28], [29]
and many existing learning techniques can be directly applied
in a multiagent scenario, by delimiting a part of the domain that
involves only a single agent, as described by Weiss [30]. Multia-
gent learning is, however, focused on learning techniques which
take explicitly advantage from the presence of several agents in
the environment, and MAS approaches have been generalized
to MRS. For example, reinforcement learning is often used in
MRS applications in order to improve the performance of co-
operating agents: in L-ALLIANCE agents learn how to better
estimate the performance of the other agents [31], in [32] rein-
forcement learning is properly modified to cope with noisy, and
dynamic environment, while in [33] Q-learning is used to ap-
proach the multirobot observation of multiple moving targets.
We refer to some of these works for their approaches to coor-
dination, though we do not specifically consider learning tech-
niques in MRS.

In [34] a formal analysis of optimality and complexity for
teamwork theories [35]–[37] in MAS is presented. The work
uses a general framework called the communicative multiagent
team decision problem (COMM-MTDP), based on decentral-
ized partially observable Markov decision processes. Using this
framework, a classification of teamwork theories is proposed
along the dimensions of observability and communication cost,
deriving optimality and complexity results. The authors focus
on four categories for the observability: collective partial ob-
servability, where no assumption is made on the agents’ obser-
vations, collective observability, where a unique world state can
be derived from the collection of the agents’ observations, in-
dividual observability, where each agent can derive a unique
world state from its own observation and, finally, nonobserv-
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ability where no feedback is provided to the agent from the envi-
ronment. As for communication the authors consider three cat-
egories: general communication, where no particular assump-
tions are made on communication cost, free communication,
where no cost is associated with communication acts, and no
communication, where there is no explicit communication. For
all the cases that can be characterized by the combination of
those categories, time complexity results are given to find an
optimal policy for the team. Moreover, the authors report the
analysis of a specific domain through an empirical evaluation
and comparison of different communication policies taken from
the literature, with respect to a local optimal and globally op-
timal policy inferred by the authors, varying the communication
costs and the degree of observability. The comparison pinpoints
the various situations (i.e., combination of communication costs
and degree of observability) where the communication policies
show suboptimality with respect to the globally optimal policy.
The theoretical and experimental results obtained in the paper
for teamwork in MAS are very interesting: even if the assump-
tions made could not always apply to robotic systems (i.e., the
absence of delay or noise in the communication channels), they
provide useful guidelines for the design of a coordination ap-
proach for a MRS based on teamwork theories.

In [15], [38] the problems concerning the analysis and syn-
thesis of intelligent group behaviors in MRS are addressed in
detail. Definitions for key concepts related to MRS coordina-
tion are given, thus, precisely characterizing several important
aspects of the problem. In particular, distinctions are made ac-
cording to the ability of the agents to recognize their kin, and
based on whether the agents have an explicit model of their
team mates. There is a clear correspondence between our notion
of awareness for a robotic agent, and its ability of kin recog-
nition, but we do not classify the aware agents according to
their model of team mates, we rather consider the protocol used
for coordination. Moreover, the approaches that we consider as
strong coordinated are necessarily able to recognize their kin
and generally a model of the team members is present; on the
other hand, systems composed of robotic agents which are able
to recognize their kin but do not have a model of the team mates
could be classified in our taxonomy as weakly coordinated or
aware not coordinated. Regarding the issue of communication,
in [15] a definition similar to the one proposed in this article
is given for direct communication and indirect communication,
however, a further distinction is made between direct communi-
cation and directed communication (which is a direct commu-
nication aimed at a precise receiver). finally the definition of ex-
plicit cooperation, considered in [15], is similar to the definition
of coordination provided in this work, while implicit coopera-
tion can be related to our definition of cooperation.

The work by Parker [5] is another survey of the MRS liter-
ature, whose goal is to characterize several primary research
topics for MRS research. It is focused on distributed robotic sys-
tems and in particular on research that has been demonstrated on
physical robot implementation. Therefore, in [5] a taxonomy, as
above discussed, is not provided: only some of the research is-
sues such as communication and architectures correspond to di-
mensions in the proposed taxonomy. Conversely, localization,
mapping and exploration, object transportation and manipula-

tion and motion coordination, in our discussion are regarded as
general tasks. As already discussed, we do not explicitly address
biological inspiration, but several works that are presented in [5]
under the above research topic are also addressed in our classi-
fication in light of their approach to coordination. We do not
look at reconfigurable robots, because those works, at present,
are mostly focused on hardware development. Nonetheless, the
ability to change the number and the capabilities of the robotic
agents could be regarded as one of our system dimension.

A recent work focusing on the analysis of task allocation in
MRS is presented in [39]. This work presents a taxonomy to
analyze the different approaches to the problem of multirobot
task allocation (MRTA) appeared in the literature, proposing a
formal framework for the study of this problem. The authors
consider the following three main dimensions:

1) single-task (ST) versus multitask (MT) robots, based
on whether the robots involved in the task assignment
process can execute more than one task at a time;

2) single-robot (SR) versus multirobot (MR) tasks, consid-
ering if the tasks to be performed involve one or multiple
robots;

3) instantaneous assignment (IA) versus time-extended as-
signment (TA), distinguishing whether the information
concerning the robots, tasks and environment permit only
an instantaneous assignment or a more sophisticated plan-
ning approach.

The authors provide a formal characterization of a wide set of
MRTA problems, analyzing and classifying in their taxonomy
significant approaches used in MRS literature; for those ap-
proaches, bounds to the optimality of the method used with re-
spect to the optimal solution are provided. The focus of this
work is posed on a specific problem (MRTA), which represents
one, important, aspect of MRS coordination. Being the problem
of task assignment generally approached using a well defined
coordination protocol, all the works analyzed in [39] can be
precisely classified in our taxonomy as strongly-coordinated.
Therefore, the taxonomy presented by the authors can be con-
sidered as a more detailed investigation of the approaches that
we classify as strongly-coordinated.

Finally, a chapter of [1] is devoted to social behavior for
MRS. Several interesting characteristics and fundamental prob-
lems for MRS behaving in a society are pointed out. The chapter
is mostly focused on several aspects of MRS social structure,
such as social organization, communication, distributed percep-
tion and social learning, providing a broad perspective on MRS.

III. TASKS AND DOMAINS FOR MRS

Although we do not consider the application domain as a
dimension in our taxonomy, we believe it is useful to give an
overview of the specific test-beds which are commonly used in
the MRS literature for validating and evaluating the proposed
coordination techniques. In particular, we divide each of the de-
scribed test-bed in a generic description of the abstract task the
robot should be able to execute, and the real application domains
that are strictly tied to it. By abstract task we refer to a general
description of the goal the MRS should pursue, without con-
sidering the details of the application, while the application do-
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mains tied to the test-bed are the real-world applications that
require similar coordination capabilities.

Foraging and Coverage: The foraging task requires the com-
ponents of the MRS to pick up objects scattered in the environ-
ment; foraging is a test-bed often used for MRS, because of its
analogies with tasks like toxic waste cleaning, mine cleaning,
and service robots [40], [41]. A major issue in this test-bed is to
avoid interferences among the robots during the task execution.
The coverage task is very similar to foraging, since it requires
the robots to process all the points of the free space in the envi-
ronment [42]. The main issue for coverage is therefore, to find
effective techniques for cooperatively scanning all the environ-
ment. Applications for coverage are: demining, snow removal,
lawn mowing, car-body painting, etc.

Multitarget Observation: The task of multitarget observa-
tion requires a team of robots to detect and track a set of moving
objects. The robots have to maximize the time during which
each of the moving target is being observed by at least one of
the robotic agents within the MRS. The multitarget observation,
also known as: cooperative multirobot observation of multiple
moving targets (CMOMMT), is a very recent MRS test-bed,
first introduced in [6]. Besides systems composed of mobile
robots, sensor nets are often used to accomplish this kind of task
[43]–[45]. Such systems are typically composed of devices with
very limited computational capabilities, and are able to com-
municate among them and monitor the environment. Although
sensor nets represent an effective solution to this task, as pre-
viously remarked, they are not in the scope of the MRS we are
considering in this paper. multirobot observation has many con-
nections with security, surveillance and recognition problems
[6], [46], where targets moving around in a bounded area must
be observed.

Box Pushing and Object Transportation: The task of box
pushing requires the robotic agents to cooperatively push boxes
in order to reach a desired configuration. The box pushing task
has analogies with problems like stockage, truck loading and un-
loading. While in the box pushing task the objects are assumed
to be on a plane, object transportation focuses on lifting and car-
rying objects [9], thus substantially increasing the complexity
of the task. Applications involved are transportation of heavy
objects in industrial environments or assembly of large-scale
structures, such as terrestrial buildings or planetary habitat [9].
In most of the applications it is assumed that each robot cannot
carry the object alone, thus, object transportation is frequently
used as test-bed for issues like motion coordination and forma-
tion control.

Exploration and Flocking: Under the label of exploration
and flocking different tasks can be grouped: these tasks differ
in the way they are realized, but have the common feature to
require MRS members to coordinate their movements in the en-
vironment. Behaviors like flocking, formation maintenance or
map building can be considered in the same class. In the explo-
ration task the robots must be spread in the environment in order
to collect as much information as possible about the surrounding
area. In the flocking task the goal for the robotic agents is to
move together, such as in a flock. The formation task is focused
on having the robots move in the environment forming partic-
ular shapes. Cooperation among the robotic agents is also used

to localize each other, and to fuse information acquired from
the environment. Map building of unknown environments is a
common issue related to exploration, and in particular, a very in-
teresting topic is the cooperative simultaneous localization and
mapping, in which the robots need to localize while moving and
building the map of the environment [7]. The problem of explo-
ration and flocking is related with several applications such as
transshipment operations in harbors, airports and marshalling
yards, motion coordination in industrial application and explo-
ration of dangerous environments. Another example of explo-
ration task is given by the RoboCup Robot-Rescue league [47],
that is a setting for experimenting MRS involved in searching
victims in an unknown environment representing a disaster sce-
nario.

Soccer: Robotic soccer has been considered in the last years
as an interesting test-bed for research in multiagent and multi-
robot cooperation [14]. The uncertain dynamics and hostile en-
vironment in which the robots operate makes coordination of
the multirobot system a real challenging problem. While in the
early years of the robotic league competitions the focus has been
on improving the single robot capabilities, only recently coor-
dination in the MRS has become a central issue. The different
settings of each of the robotic leagues present several issues for
coordination in MRS. In particular, in the Middle-Size league
and the Four Legged league, all the robot sensors must be on
board; therefore robots are more autonomous and have to deal
with high uncertainty in reconstructing global information about
the environment. On the other hand in the Small Size league the
robotic agents can take advantage of a top view of the environ-
ment provided by a camera on the top of the field, therefore the
coordination approaches in this league are mostly centralized.
The use of coordination in the soccer domains has demonstrated
significant improvement in the performance of the teams.

IV. SYSTEM CLASSIFICATION

In this section we describe several works related to MRS, by
collecting them according to their position inside our taxonomy.
By discussing concrete examples of implemented MRS we aim
at characterizing in deeper detail the proposed taxonomy. More-
over, we describe the constraints imposed by the different ap-
proaches to coordination presented, and consider the tasks and
domains that are addressed within each class.

A. Unaware Systems

Unaware systems are characterized by the fact that each
member of the MRS executes its own task without any knowl-
edge about the other members of the team. Obviously, in this
setting, coordination is not possible, while cooperation among
the robots can still be obtained in a goal driven manner. Due
to the fact that each member of the team does not have knowl-
edge of the other robots, the communication among the robotic
agents cannot be direct. It is worth mentioning that all the works
we classified as unaware cannot be considered as deliberative,
because a deliberative approach requires a reorganization of the
whole team and thus the robots must be aware of each other.

Unaware approaches are frequently adopted in biologically
inspired MRS [23], [48]. The robots achieve cooperation by
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using only very simple basic behaviors and exploiting only local
interactions. These kind of systems are well suited for large
scale development, but they are normally used only for very
simple tasks such as foraging [48] or box pushing [23]. In par-
ticular, in [48] stigmergic communication is used for a team of
robots collecting objects by using the simple rule of transporting
objects near other objects. In [23], the authors use a cooperative
object transportation model inspired by ant colonies; stigmergic
communication is achieved through the perceived stimuli on the
item being transported. Another biologically inspired model,
based on the behavior of E. coli bacteria, is presented in [49],
where a cooperative foraging task is addressed. E. coli bac-
teria are characterized by a very simple and effective foraging
strategy, which relies on the sensing of nutritional and toxic sub-
stances. The author uses this model to design a nongradient opti-
mization algorithm that drives the bacteria in their search for the
optimal solution of the objective function. This model has been
used in a preliminary study for controlling groups of unmanned
autonomous aerial vehicle [50], that should be able to coop-
eratively search for interesting target in a dangerous environ-
ment. Also pheromone based models have been considered to
design cooperative unaware systems. In particular in [51] mul-
tiple pheromone types are used by static entities (named pumps)
to guide moving entities (walkers). The goal of the moving en-
tities is to reach the positions occupied by the pumps, resulting
in a special kind of foraging task with application to military
air campaign. The pheromone types have different propagation
radii, in order to provide a better guidance function over all the
working space. Pure pheromone approaches (such as the one
discussed above) can be considered as unaware; however, a pro-
tocol based information exchange on an underlying pheromone
infrastructure can provide the system with more sophisticated
coordination capabilities (see Section IV-F).

Notice that, as previously described approaches show, in un-
aware systems interactions among entities are possible through
the use of stigmergy. However, each active entity interprets the
modifications of the environment, without having any model of
the cause of those modifications. In particular, if an entity A ob-
serves a particular modification of the environment, it has no
ability to distinguish if the source that caused that modifica-
tion, is an entity cooperating with A, an exogenous event (i.e., a
human) or the entity A itself. Therefore, the behavior of A will
always be independent of the source of the observed modifica-
tion. This property of the system can be considered as the main
criterion to classify such approaches as unaware.

In many of the unaware systems, the MRS is composed of ho-
mogeneous robots; however, [52] makes a comparison between
homogeneous and heterogeneous unaware MRS in a multifor-
aging task (i.e., foraging with different kinds of objects) by con-
sidering the relation between performance and a metric, called
social entropy, which denotes the degree of diversity within the
system. The results presented show that even an unaware ap-
proach can benefit from the heterogeneity of the team members,
and that this benefit is tightly related to the inherent complexity
of the task.

In [53] a robot team is used to cooperatively transport an
object. The team is composed of a leader robot and some fol-
lowers (three in the example reported in the paper): the leader

has different hardware, and is in charge of observing the envi-
ronment and plan the object motion. The followers can detect
the object motion and react to the object movement based only
on their local perception. The idea of the proposed system is
that all robots support the object together to share the load and
keep the balance of the object, while each follower tries to min-
imize the inter-force with the object to reduce the driving effort
of the leader. Although the overall system requires the presence
of a leader and several followers, each robot acts as it is the
only agent in the system, thus the system can be classified as
unaware.

B. Aware, Not Coordinated Systems

Aware systems are characterized by the fact that the robots of
the team have knowledge of the presence of other robots in the
environment, and act together in order to accomplish the same
global goal. However, a robot may not take into account the ac-
tions performed by other robots in order to accomplish its task,
and in this case we consider it as aware not coordinated. It is
not always easy to give a general criterion to precisely distin-
guish whether each robot is taking into account other’s robot
actions during its task execution. In general, aware not coordi-
nated approaches are characterized by simple methods to reduce
interference among robots executing a cooperative task, while
avoiding the use of a specified protocol. It is worth noticing that
avoiding interferences among robots is definitely different from
simple obstacle avoidance, because obstacle avoidance does not
require the robot to recognize its team mates and because inter-
ference can occur in more general settings, as compared with
conflicts on physical space, such as sensorial interference.

A clear example of the differences among unaware, aware not
coordinated and weakly coordinated approaches is presented in
[54], where three different approaches are used for the coverage
of an unknown environment by a team of cooperative robots.
One of these approaches can be considered unaware, the second
aware not coordinated, while the third is weakly coordinated.
The overall design choice is to have behavior-based robots
using only local sensing: in the unaware approach, each robot
chooses the most promising direction of motion simply eval-
uating through vision the direction that maximizes the frontal
visibility; in the aware not coordinated approach, the robots
recognize each other and choose the direction of motion which
is opposite to the average angle subtended by all its neighbors in
its visual field; in the weakly coordinated approach, when two
robots recognize each other they form a coalition, and calculate
the most promising direction of motion as that direction that
maximizes the coalition sensorial coverage. The experiments
presented in the article show that the aware not coordinated
approach slightly outperforms the weakly coordinated and
that both approaches outperform the unaware one. This work
shows clearly the difference between an aware, not coordinated
approach and a weakly coordinated one. Moreover, it shows
by means of experiments that, in some cases, an aware not
coordinated approach can outperform a weakly coordinated
one.

Particular cases of aware not coordinated approaches might
ends up in competitive settings; while those kind of approaches
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do not fall in our taxonomy that is explicitly focused toward co-
operative approaches, it seems worthwhile to report an example
of such approaches that clearly pinpoint the difference between
competitive and cooperative coordinated approaches. In [55] the
authors present a very interesting solution to the problem of in-
terferences among aircrafts using two different levels: at the first
level a competitive approach is used while at the second level
coordination among aircrafts is required. The authors address
the problem of air traffic management in free flight mode4. At
the first level interference among aircrafts are avoided following
a competitive approach: each aircraft is modeled as a player in
a -player zero-sum game, each aircraft models the action of
the others as a known set of disturbance values, ignoring which
particular value will be actually used in the particular situation.
Each aircraft solves the game considering the worst possible
disturbance values, if a saddle solution exist and this solution
is within the safe requirement for each aircraft then the aircraft
need not to coordinate and not even to cooperate. However, if
this condition is not met, then the conflict resolution is addressed
at the second level: using a coordinated approach the aircrafts
perform predefined a-priori safe maneuver.

In aware not coordinated systems, cooperation among robotic
agents is often considered as an emergent property of the system
that results from the interaction between the system and its dy-
namic environment [56]. The collective task is therefore de-
signed using an interaction loop between the system and the
environment, ultimately converging toward the desired perfor-
mance. In [57] such an approach is presented in several different
tasks. In particular, a box pushing task is implemented with
robots whose collective behavior is achieved by providing each
of them with basic behaviors. The basic behaviors are activated
according to the progress of the overall task, which is monitored
by perception of each single robot. The approach achieves co-
ordination by exploiting only local information that the robots
can acquire from the environment and therefore it is suitable for
coordination of large size teams.

C. Weakly Coordinated Systems

MRS may present a form of weak coordination that does not
rely on the application of an explicit predefined coordination
protocol. By coordination protocol we mean a set of explicit
predefined rules, which are followed by all the robots of the
system, that clearly define the behavior of the robots depending
on the messages exchanged among the team mates. By behavior
we mean a high level action the robot can accomplish: typical
examples of behaviors are going in a predefined position, pick
up an object, track an object and so on. Weak coordination does
not pose any constraints on the system dimensions defined in
our taxonomy. Thus, all the combinations of communication,
architecture composition, and size are possible.

In particular, in [58], a weakly coordinated approach for ob-
ject transportation, avoiding the use of communication is pre-
sented. Two robots cooperatively transport an object using free
rotational joints, that keep the object tied to the robots; the joints
are equipped with a force sensor, able to measure the relative

4In free flight mode, each aircraft can autonomously execute small detours
from the assigned route to achieve better flight condition or avoid conflict due
to schedule delays.

angle between the axes of the object and the robot. One of the
robots is the leader and is in charge of executing a desired given
trajectory for the object, while the follower estimates the mo-
tion of the object and avoids the obstacles present in the en-
vironment. No communication is held between the leader and
the follower, however, the follower estimates the motion of the
leader and uses this information for better accomplishing its
task realizing a coordinated approach. The two robot coordi-
nate themselves without the use of communication and there-
fore, without an explicit protocol, thus the approach is to be con-
sidered weakly coordinated.

In [59] another weakly coordinated approach that avoids
communication is proposed. The system is used to coopera-
tively clean a room, the robots are homogeneous and each one
performs the next move based only on its local perception, thus
the system can be considered reactive. Cooperation is achieved
by applying an algorithm that tells each robot to clean a location
only if it is not critical: a noncritical location is a location that
does not disconnect the current graph of dirty grid points. The
robots stop when no dirty points exist in the environment, the
communication is stigmergic in the sense that the dirty points
can be considered as markers, that the robots use to cooperate
in the cleaning process. In this case coordination among robots
is achieved, by following a general rule that constrains the robot
behaviors, integrating the actions of the robots in a convenient
indirect way.

In [60] the task is formation control and communication is
used to exchange only the global position among the robots;
considering those information and the formation to be achieved
each robot tries to adjust its relative distance with respect to its
team mates. The way robots achieve the desired distance is not
specified by a coordination protocol and thus the approach can
be considered weakly coordinated. This approach can be further
classified as reactive because each robot reacts to the unexpected
environmental changes, in order to maintain the predefined for-
mation, without reorganizing the overall team. A deliberative
approach for a weakly coordinated system is also possible, as
presented in [61]. To avoid interference among robots involved
in a foraging task, the environment is divided into regions of
work, the number and the size of the regions depend on the
number of working robots. At the beginning, each robot is as-
signed to one region; during the task execution each robot broad-
casts a diagnostic message, that means the robot is working cor-
rectly; on the basis of the number of the diagnostic messages re-
ceived, the working area division is reassigned. This work is an
example of a deliberative approach, because the regions of com-
petence are assigned on the basis of information regarding the
overall team (number of working robots), although the commu-
nication protocol is rather simple. The information derived from
the messages are used to change some parameters for the behav-
iors (i.e., the boundaries of the working area for each robots)
and not the behaviors themselves (i.e., searching for an object,
picking up the object and bring it to the deposit position), there-
fore the approach is to be considered aware not coordinated.

D. Strongly Coordinated, Strongly Centralized Systems

Strongly coordinated MRS are based on a system of sig-
nals by which the robots in a team exchange information,
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according to a predefined coordination protocol, concerning
the way robots have to interact. Among these systems a further
classification can be done depending on the way the protocol
is implemented. In strongly centralized systems a particular
entity (called leader) is in charge of organizing the work of
the entire team, while the other members act according to its
directions. Notice that the leader of a MRS can be a robot
itself as well as a component of the whole system (e.g., a
remote host). Although in most works direct communication
is used, it is possible to conceive a system where a leader uses
stigmergic communication in order to give “commands” to
the other robots. Moreover, most works in this class present a
deliberative approach, that is not a direct consequence of the
choice of realizing a strongly coordinated, strongly centralized
MRS, but just a very convenient way of implementing it.

The MRS presented in [62] deals with exploration and forma-
tion maintaining. A predefined leader is in charge of selecting
one formation among a set of predefined ones, according to the
current situation, and then communicating to the other robotic
agents their dislocation within the environment. The strongly
coordinated strongly centralized approach is frequently used in
systems designed for space missions; in [63] a team of cooper-
ating rovers is based on the use of the central station that co-
ordinates the rovers during the task execution. To cope with
dynamic changes of the environment a continual planning ap-
proach is used, and three different approaches to coordination
are presented. In the first approach the continual planning is per-
formed on the central station, and the commands are sent to the
rover; in the second approach tasks are assigned to the rover
from the central station and each task is planned by the rovers;
finally, in the third approach the central station rules an auction
and the rovers bid to get the assignment of the tasks. This work
shows how in a strongly centralized approach a leader can take
into account different levels of autonomy for the team members.

Another example of centralized system is SAMON [64],
where the missions of multiple autonomous underwater robots
vehicles (AUV) are coordinated through a behavior-based ar-
chitecture. In this case, several layers of coordination are used:
tactical coordinator, which issues missions orders, Supervisory
AUVs, which distributes the subordinates AUV the search
regions, AUVs, which decide their own itinerary to collect data
from the fixed sensory packages.

Also most teams in the RoboCup small-size league (e.g., [65],
[66]) use a strongly coordinated strongly centralized approach,
since robots are usually controlled by a remote host through
a global vision system. In fact, the availability of global in-
formation about the environment and the use of a remote host
for robot control naturally lead to the implementation of cen-
tralized strategies. Notice that in the class of strongly central-
ized strongly coordinated systems a further distinction could be
done by focusing on the level of autonomy allowed to each team
member: in the small-size league robots have generally a very
reduced level of autonomy and are directly controlled by the re-
mote host, while in other strongly centralized coordination ap-
proaches [62], [64] team members follow the leader’s high level
instructions, but they perform them with a certain autonomy.

In most cases centralized systems are not well suited for coor-
dination of large scale MRS, both for the communication over-

head among the team members, and for the high computation
demand required by the leader.

E. Strongly Coordinated, Weakly Centralized Systems

Strongly centralized MRS are not robust to failures in com-
munication and to incorrect operation of the leader. Therefore,
in many applications a different kind of centralized system has
been preferred. Weakly centralized systems are characterized by
the fact that the leader is not chosen a priori, but it is selected
dynamically during the mission depending on the current situa-
tion of the team and the environment.

Several policies have been used to decide which robot should
become the leader; in particular, in [67], a fixed priority is set
among the robotic agents, and if one of them is not available
as leader, the next agent in the priority order takes the control
of the team. This is possible because the robots are homoge-
neous. In [19] the leadership is given to a robot depending on
its specific characteristics (the robots are heterogeneous); for ex-
ample, a box pushing task is accomplished cooperatively by a
supervisor and a pusher; the supervisor is the leader, because it
can monitor the overall process with a camera. In [9] the robots
start an auction and “bid” in order to become the team leader.
In [20] the authors propose a free market based approach to co-
ordinate a group of robots. Costs and revenues are associated to
the tasks, and robots can trade the tasks allocation trying to max-
imize their revenue. The authors show that the use of a leader
robot proposing the tasks allocation to a group of robots, can en-
hance the team performance. The leader of a group is chosen ac-
cording to the quality of the allocation that the candidate leader
proposes to the group: if the proposed allocation reduces the as-
sociated cost of the team the resulting excess profit can be redis-
tributed within the group (including the leader), in such a way
that the robots in the group accept the leader’s allocation.

In [9] and [19], weakly centralized approaches adopting a hy-
brid architecture are presented. By hybrid architecture here we
mean an architecture that can be both social deliberative and re-
active. Specifically, both those approaches are characterized by
organizing the architecture of each single robotic agent in sev-
eral layers (three in both the works) in a hierarchy. Each layer is
able to communicate with its peers among the robotic agents, ex-
changing different type of information according to the level in
the hierarchy. Depending on the level of information exchanged
among the different layers, and thus on the protocol used, it is
possible to achieve a social deliberative or social reactive ap-
proach.

F. Strongly Coordinated, Distributed Systems

In distributed systems each team member is executing a
coordination protocol, while taking decisions in a completely
autonomous fashion. These systems are generally more robust
to communication failures and robot malfunctioning, even
though these problems may affect the overall performance of
the team in the accomplishment of the task. The large number
of works that adopt this approach shows that there is a clear
interest among the researchers to approach the problems of
cooperation in a distributed fashion. The strongly coordinated
distributed approach entails that some kind of communication
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has to be used, and leaves unconstrained the other system
dimensions.

A very interesting approach is the one used by Parker in the
ALLIANCE architecture [68]. ALLIANCE is a framework for
coordinating MRS composed of heterogeneous behavior-based
robotic agents. All the robotic agents have sets of behaviors,
which are controlled by modules called motivational behaviors
that can cross inhibit each other. Motivational behaviors are
based on two parameters: impatience and acquiescence; they
are updated based on the data that each robot acquires from
its sensors or from other robots. In [6] the ALLIANCE archi-
tecture is used in a multitrarget observation. The approach of
the ALLIANCE architecture is reactive in the sense that each
member of the team decides whether to employ itself in accom-
plishing a task, without any need to reorganize the other mem-
bers activity.

In [46] the problem of multi-target observation is also
addressed. The robotic agents are behavior-based and homo-
geneous, but the technique proposed is perfectly applicable to
a heterogeneous system as well. The proposed architecture,
called broadcast of local eligibility (BLE), is an extension of
the subsumption architecture, to enable coordination between
the robotic agents. Each behavior of each robot has a function
that locally evaluates the robot’s eligibility to accomplish a
given task; the values are then exchanged among the “peer
behaviors” of the robotic agents. The robot, whose behavior
has the highest value, inhibits the corresponding behaviors
on the other system members, thus advocating the task. This
process, called cross-inhibition, can be executed only among
peer behaviors. The approach followed in this work is social
deliberative in the sense that when a robot starts accomplishing
a task, it inhibits the peer behaviors of the other members.
Thus, when something happens, which imposes a selection of
a different action to be executed by a member of the MRS, all
the other members will be involved in this reorganization and
the new action will be executed by the robots which best fit the
requirements, thus obtaining a new strategy.

Communication in the strongly coordinated distributed ap-
proach does not need to be direct, a coordination protocol can
be realized using stigmergic communication. An interesting ex-
ample of this approach is presented in [24], where a MAS is
used for the control of a manufacturing system. The work uses a
pheromone infrastructure (PI) as stigmergic information sharing
mechanism. This approach is designed for a MAS, therefore
the stigmergic communication is realized as a shared software
framework (i.e., the PI), and not using physical signals that
can be perceived through the environment. In [69] an example
of a strongly coordinated approach for a MRS making use of
physical signals for stigmergic communication is presented. The
work is explicitly designed for large scale systems, the test-bed
is composed of a group of very small autonomous mobile robots,
equipped with a gripping device; the robots have to cooperate
in pulling sticks out of the ground. The sticks are too long for
being pulled by one robot alone, therefore the robots must pull
the same stick together. The robots walk randomly in the en-
vironment and when they find a stick, they try to pull it up. If
the stick is not being pulled by another robot they wait a certain
amount of time (gripping time) for help, otherwise they help an-

TABLE I
CLASSIFICATION DIMENSIONS

other robot in pulling the stick. This work shows how a task that
needs a tightly coupled coordination can be performed using
only stigmergic communication.

Strong coordination often requires some kind of synchroniza-
tion on the use of the available resources among the robotic
agents. Among others, the works in [70] and [41] explicitly ad-
dress the issue of conflict resolution on shared resources in a
MRS providing a distributed approach. In [70] the approach is
based on a central station that plans a mission for all the agents.
The mission assigned to the agents consists of very high level
instructions, leaving each robotic agent the execution and coor-
dination of the high level actions. To avoid conflicts on shared
resources the plans of the agents are merged; in particular, any
time an agent needs to execute a new plan that uses shared
resources, it executes a plan merging operation, trying to set
timing constraints on the actions of all the plans that access the
shared resources. In [41] the application domain is a cooper-
ative cleaning task, two robots, a vacuum and a sweeper, have
the common goal to clean an office like environment. The archi-
tecture is called architecture for behavior-based agents (ABBA)
and is based on a network consisting of two types of nodes: com-
petence modules (CM) and feature detection (FD). The edges
between the nodes represent relationships of different kind (suc-
cessor, predecessor, conflictor, precondition, positive or nega-
tive correlation), which can be learned and modified during the
task execution. Each node has a level of activation that is con-
trolled through the relationships, conflict resolution is achieved
by establishing the relationships among the nodes in a proper
way.

Finally, an example of distributed MRS in the soccer domain
is given by the RoboCup Azzurra Robot Team (ART) that has
implemented a distributed heterogeneous robotic soccer team
[71], based on a simple and flexible coordination protocol. The
approach makes use of a formation/role mechanism and of dy-
namic assignment of roles. Role assignment is obtained by ex-
plicit communication of information about the status of the envi-
ronment. A simple form of negotiation is used in order to realize
a deliberative, distributed MRS that does not require a global
representation of the environment. Each robot has the knowl-
edge necessary to play any role, and robots switch roles on the
fly, when a distributed agreement on the actions to be performed
is achieved. This work presents an effective example of dynamic
task assignment for a MRS performing a very complex task in
a highly dynamic and hostile environment.

V. TRENDS AND CONCLUSIONS

In this paper we have addressed the recent developments in
the field of MRS, focusing on those approaches that are targeted
to specific applications and motivated by engineering consid-
erations. Specifically, we have presented a taxonomy with the
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TABLE II
OVERVIEW OF THE CLASSIFIED MRS

aim of highlighting the coordination aspects of the recent pro-
posals in the literature: we have defined a set of coordination
dimensions for the classification of the approaches to team co-
ordination, together with a set of system dimensions that account
for the design choices that are more relevant to the team organ-
ization. Moreover, we have identified some prototypical tasks
that characterize various application domains. Finally, we have
classified some of the recent works on MRS in terms of the pro-
posed taxonomy; a summary of the classification is presented
in Table II, where the approaches described are positioned ac-
cording to the task accomplished and their placement inside our
taxonomy.

Although the classification is focused on coordination and,
consequently, biased toward a class of MRS, a few reflections
on the outcomes of the analysis performed seem worthwhile. a
first observation is that both unaware and aware not coordinated
approaches can achieve very interesting results in the execution
of tasks, such as foraging or box pushing. Therefore, coopera-
tion without coordination can be successful in MRS, when the
form of cooperation can be obtained with a loose coupling of
the agents. Arguably, approaches that fall in this segment of the
taxonomy are more frequent than in the case of MAS.

However, the analysis of the recent works in the literature
shows that for more complex tasks (e.g., soccer, rescue mis-
sions, etc.), where the unpredictable, uncertain and sometimes
competing environment requires both a very effective perfor-
mance and high robustness, more complex coordination capa-
bilities are required. In particular, among the strongly coordi-
nated approaches, all the possible organizations have been ex-
tensively used, however a trend toward the development of dis-
tributed approaches is not surprising. Distributed approaches
are generally more flexible, robust and less computational de-
manding. In the case of aware coordinated approaches, the tech-
niques for coordination have been largely inspired by the lit-
erature on MAS. However, the major problems that have been
tackled are concerned with the application of the coordination
techniques in critical conditions due to the uncertainty of the en-
vironment and to the limitations and inaccuracies in the sensing
capabilities of the robots. We argue that further research devel-
opments along these lines may eventually lead to coordination
models, that are explicitly designed for the robotic scenario.
Moreover, as the tasks to be completed by the MRS become
more and more challenging, thus requiring tightly coupled co-
ordination, the issue of conflict resolution is likely to receive
increasing attention.

Summarizing, the research on MRS addressed in the present
work covers a broad range of approaches showing that the form

of coordination can vary significantly depending on the task to
be performed. The complexity of the tasks in which robots are
involved (e.g., building patrolling, large-scale assembly, rescue
operations) entails increasingly complex capabilities both in
software and in hardware. Furthermore, the research on MRS
is nowadays facing large scale systems [11], [12]: MRS with
a large number of robots capable of cooperative localization,
long term autonomy, task assignment and conflict resolutions.
In fact, teams formed by a large number of robots will impact
also on the other system dimensions of our taxonomy.

In this context, social deliberative architectures become
more complex to realize, possibly requiring the introduction of
different levels of organization; the adoption of a team strategy
seems nonetheless needed, especially in uncertain and dynamic
environments. Direct communication is an obvious choice to
achieve coordination, when the application domain does not
pose additional constraints, but it is easy to foresee that the in-
crease in the size of the robotic team will introduce constraints
in the structure of the communication network. Interestingly,
among the MRS several alternative approaches have been
proposed such as stigmergic communication or coordination
without communication at all.

In the recent efforts on large scale systems, heterogeneity is
often chosen in order to exploit different robot capabilities and
reduce the cost of the overall system. Moreover, in this setting a
weakly centralized approach has been adopted, where the more
capable robot assumes the role of leader for the most com-
plex tasks (cooperative localization, autonomous recharging,
autonomous teleoperation). This notwithstanding, within large
scale systems distributed approaches can be advantageous also
in the case of heterogeneous systems.

In conclusion, our analysis of the literature indicates that the
problem of coordination will be central to the design of MRS,
especially when dealing with complex tasks and large scale sys-
tems. In this respect, teamwork theories and team oriented pro-
gramming [36], [72] could play increasing role in order to obtain
more effective and general coordination frameworks.
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