
Introduction to PCL:
The Point Cloud Library
Basic topics

Thanks to Radu Bogdan Rusu, Bastian Steder

and Jeff Delmerico for some of the slides!

Alberto Pretto

Point clouds: a definition

A point cloud is a data structure used to represent a
collection of multi-dimensional points and is
commonly used to represent three-dimensional data.

The points usually represent the X, Y, and Z geometric
coordinates of a sampled surface.

Each point can hold additional information: RGB
colors, intensity values, etc...

Where do they come from?

2/3D Laser scans

Laser triangulation

Stereo cameras

RGB-D cameras

Structured light cameras

Time of flight cameras

Point clouds in robotics

Navigation / Obstacle avoidance

Object recognition and registration

Grasping and manipulation

Point Cloud Library

 → pointclouds.org

The Point Cloud Library (PCL) is a standalone, large scale,
open source
(C++) library for 2D/3D image and point cloud processing.

PCL is released under the terms of the BSD license, and thus
free for commercial and research use.

PCL provides the 3D processing pipeline for ROS, so you can

also get the perception pcl stack and still use PCL standalone.

Among others, PCL depends on Boost, Eigen, OpenMP,...

PCL Basic Structures: PointCloud

A PointCloud is a templated C++ class which basically
contains the following data fields:

– width (int) - specifies the width of the point cloud
dataset in the number of points.

 the total number of points in the cloud (equal with the →

number of elements in points) for unorganized datasets
 the width (total number of points in a row) of an →

organized point cloud dataset

– height (int) - Specifies the height of the point cloud
dataset in the number of points

 set to 1 for unorganized point clouds→

 the height (total number of rows) of an organized →

point cloud dataset

– points (std::vector <PointT>) - Contains the data array
where all the points of type PointT are stored.

–

PointCloud vs. PointCloud2

We distinguish between two data formats

for the point clouds:
– PointCloud<PointType> with a specific data type

(for actual usage in the code)

– PointCloud2 as a general representation containing
a header defining the point cloud structure (e.g., for
loading, saving or sending as a ROS message)

Conversion between the two frameworks is easy:
– pcl::fromROSMsg and pcl::toROSMsg

Important: clouds are often handled using smart
pointers, e.g.:

– PointCloud<PointType> :: Ptr cloud_ptr;

Point Types

PointXYZ - float x, y, z

PointXYZI - float x, y, z, intensity

PointXYZRGB - float x, y, z, rgb

PointXYZRGBA - float x, y, z, uint32 t rgba

Normal - float normal[3], curvature

PointNormal - float x, y, z, normal[3], curvature

 → See pcl/include/pcl/point_types.h for more
examples.

Building PCL Stand-alone Projects

CMakeLists.txt

project(pcl_test)

cmake_minimum_required (VERSION 2.8)

cmake_policy(SET CMP0015 NEW)

find_package(PCL 1.7 REQUIRED)

add_definitions(${PCL_DEFINITIONS})

include_directories(... ${PCL_INCLUDE_DIRS})

link_directories(... ${PCL_LIBRARY_DIRS})

add_executable(pcl_test pcl_test.cpp ...)

target_link_libraries(pcl_test${PCL_LIBRARIES})

PCL structure

PCL is a collection of smaller, modular C++ libraries:
– libpcl_features: many 3D features (e.g., normals and curvatures, boundary

points, moment invariants, principal curvatures, Point Feature Histograms
(PFH), Fast PFH, ...)

– libpcl_surface: surface reconstruction techniques (e.g., meshing, convex hulls,
Moving Least Squares, ...)

– libpcl_filters: point cloud data filters (e.g., downsampling, outlier removal,
indices extraction, projections, ...)

– libpcl_io: I/O operations (e.g., writing to/reading from PCD (Point Cloud Data)
and BAG files)

– libpcl_segmentation: segmentation operations (e.g.,cluster extraction,
Sample Consensus model fitting, polygonal prism extraction, ...)

– libpcl_registration: point cloud registration methods (e.g., Iterative Closest
Point (ICP), non linear optimizations, ...)

– libpcl_range_image: range image class with specialized methods

It provides unit tests, examples, tutorials, ...

Point Cloud file format

Point clouds can be stored to disk as files, into the PCD
(Point Cloud Data) format:

– # Point Cloud Data (PCD) file format v .5
FIELDS x y z rgba
SIZE 4 4 4 4
TYPE F F F U
WIDTH 307200
HEIGHT 1
POINTS 307200
DATA binary
...<data>...

Funtions: pcl::io::loadPCDFile and pcl::io::savePCDFile

Example: create and save a PC

#include<pcl/io/pcd_io.h>

#include<pcl/point_types.h>

 //....

 pcl::PointCloud<pcl::PointXYZ>:: Ptr cloud_ptr (new pcl::PointCloud<pcl::PointXYZ>);

 cloud->width=50;

 cloud->height=1;

 cloud->isdense=false;

 cloud->points.resize(cloud.width cloud.height);∗

 for(size_t i=0; i<cloud.points.size(); i++){

 cloud->points[i].x=1024 rand()/(RANDMAX+1.0f);∗

 cloud->points[i].y=1024 rand()/(RANDMAX+1.0f);∗

 cloud->points[i].z=1024 rand()/(RANDMAX+1.0f);∗

 }

 pcl::io::savePCDFileASCII("testpcd.pcd",*cloud);

Visualize a cloud

 boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new

 pcl::visualization::PCLVisualizer ("3D Viewer"));

 viewer->setBackgroundColor (0, 0, 0);
 viewer->addPointCloud<pcl::PointXYZ> (in_cloud, cloud_color,
 "Input cloud");
 viewer->initCameraParameters ();
 viewer->addCoordinateSystem (1.0);
 while (!viewer->wasStopped ()) viewer->spinOnce (1);

Basic Module Interface

Filters, Features, Segmentation all use the

same basic usage interface:
– use setInputCloud() to give the input

– set some parameters

– call compute() or filter() or align() or ... to get the
output

PassThrough Filter

Filter out points outside a specified range in one
dimension.

– pcl::PassThrough<T> pass_through;
 pass_through.setInputCloud (in_cloud);
 pass_through.setFilterLimits (0.0, 0.5);
 pass_through.setFilterFieldName ("z");
 pass_through.filter(*cutted_cloud);

Downsampling

Voxelize the cloud to a 3D grid. Each occupied
voxel is approximated by the centroid of the points
inside it.

– pcl::VoxelGrid<T> voxel_grid;
 voxel_grid.setInputCloud (input_cloud);
 voxel_grid.setLeafSize (0.01, 0.01, 0.01);
 voxel_grid.filter (*subsamp_cloud) ;

Features example: normals

 pcl::NormalEstimation<T, pcl::Normal> ne;

 ne.setInputCloud (in_cloud);
 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new
 pcl::search::KdTree<pcl::PointXYZ> ());
 ne.setSearchMethod (tree);
 ne.setRadiusSearch (0.03);
 ne.compute (*cloud_normals);

Segmentation example

A clustering method divides an unorganized point
cloud into smaller, correlated, parts.
EuclideanClusterExtraction uses a distance
threshold to the nearest neighbors of each point to
decide if the two points belong to the same cluster.

– pcl::EuclideanClusterExtraction<T> ec;
ec.setInputCloud (in_cloud);
ec.setMinClusterSize (100);
ec.setClusterTolerance (0.05); // distance threshold
ec.extract (cluster_indices);

Point Cloud Registration

We want to find the translation and the rotation
that maximize the overlap between two point
clouds

Point Cloud Registration

We want to find the translation and the rotation
that maximize the overlap between two point
clouds

Point Cloud Registration

We want to find the translation and the rotation
that maximize the overlap between two point
clouds

Point Cloud Registration

We want to find the translation and the rotation
that maximize the overlap between two point
clouds

Point Cloud Registration

We want to find the translation and the rotation
that maximize the overlap between two point
clouds

Point Cloud Registration

We want to find the translation and the rotation
that maximize the overlap between two point
clouds

Point Cloud Registration

We want to find the translation and the rotation
that maximize the overlap between two point
clouds

Iterative Closest Point - 1

ICP iteratively revises the transformation
(translation,rotation) needed to minimize the
distance between the points of two raw scans.

– Inputs: points from two raw scans, initial
estimation of the transformation, criteria for
stopping the iteration.

– Output: refined transformation.

Iterative Closest Point - 2

The algorithm steps are :
– 1. Associate points of the two cloud using the

nearest neighbor criteria.

– 2. Estimate transformation parameters using a
mean square cost function.

– 3. Transform the points using the estimated
parameters.

– 4. Iterate (re-associate the points and so on).

Iterative Closest Point - 3

 IterativeClosestPoint<PointXYZ, PointXYZ> icp;

 // Set the input source and target

 icp.setInputCloud (cloud_source);

 icp.setInputTarget (cloud_target);

 // Set the max correspondence distance to 5cm

 icp.setMaxCorrespondenceDistance (0.05);

 // Set the maximum number of iterations (criterion 1)

 icp.setMaximumIterations (50);

 // Set the transformation epsilon (criterion 2)

 icp.setTransformationEpsilon (1e-8);

 // Set the euclidean distance difference epsilon (criterion 3)

 icp.setEuclideanFitnessEpsilon (1);

 // Perform the alignment

 icp.align (cloud_source_registered);

 // Obtain the transformation that aligned cloud_source to cloud_source_registered

 Eigen::Matrix4f transformation = icp.getFinalTransformation ();

