Home » Publication » 26792

Dettaglio pubblicazione

2023, CANCERS, Pages - (volume: 15)

A Network of MicroRNAs and mRNAs Involved in Melanosome Maturation and Trafficking Defines the Lower Response of Pigmentable Melanoma Cells to Targeted Therapy (01a Articolo in rivista)

Vitiello M., Mercatanti A., Podda M. S., Baldanzi C., Prantera A., Sarti S., Rizzo M., Salvetti A., Conte F., Fiscon G., Paci P., Poliseno L.

Simple Summary Selective inhibitors of mutant BRAFV600E (BRAFi) have revolutionized the treatment of metastatic melanoma patients and represent a powerful example of the efficacy of targeted therapy. However, one of the main limitations of BRAFi is that treated cells put in place several adaptive response mechanisms, which initially confer drug tolerance and later provide a gateway for the insurgence of genetically acquired resistance mechanisms. We previously discovered that pigmentation is one of these adaptive response mechanisms. Upon BRAFi treatment, those cells that increase their pigmentation level are more resistant to BRAFi than those that do not. Here, we demonstrate that pigmentation limits BRAFi activity through an increase in the number of intracellular mature melanosomes. We also show that this increase derives from increased maturation and/or trafficking. In addition, we identify the miRNAs and mRNAs that are involved in these biological processes. Finally, we provide the rationale for testing a new combinatorial therapeutic strategy that aims at increasing BRAFi efficacy by blocking the adaptive responses that they elicit. This strategy is based on the combined use of BRAFi with inhibitors of pigmentation, specifically inhibitors of melanosome maturation and/or trafficking. Background: The ability to increase their degree of pigmentation is an adaptive response that confers pigmentable melanoma cells higher resistance to BRAF inhibitors (BRAFi) compared to non-pigmentable melanoma cells. Methods: Here, we compared the miRNome and the transcriptome profile of pigmentable 501Mel and SK-Mel-5 melanoma cells vs. non-pigmentable A375 melanoma cells, following treatment with the BRAFi vemurafenib (vem). In depth bioinformatic analyses (clusterProfiler, WGCNA and SWIMmeR) allowed us to identify the miRNAs, mRNAs and biological processes (BPs) that specifically characterize the response of pigmentable melanoma cells to the drug. Such BPs were studied using appropriate assays in vitro and in vivo (xenograft in zebrafish embryos). Results: Upon vem treatment, miR-192-5p, miR-211-5p, miR-374a-5p, miR-486-5p, miR-582-5p, miR-1260a and miR-7977, as well as GPR143, OCA2, RAB27A, RAB32 and TYRP1 mRNAs, are differentially expressed only in pigmentable cells. These miRNAs and mRNAs belong to BPs related to pigmentation, specifically melanosome maturation and trafficking. In fact, an increase in the number of intracellular melanosomes-due to increased maturation and/or trafficking-confers resistance to vem. Conclusion: We demonstrated that the ability of pigmentable cells to increase the number of intracellular melanosomes fully accounts for their higher resistance to vem compared to non-pigmentable cells. In addition, we identified a network of miRNAs and mRNAs that are involved in melanosome maturation and/or trafficking. Finally, we provide the rationale for testing BRAFi in combination with inhibitors of these biological processes, so that pigmentable melanoma cells can be turned into more sensitive non-pigmentable cells.
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma