Nonlinear Optimization
-
-
We consider the convex quadratic linearly constrained problem with bounded variables and with huge and dense Hessian matrix that arises in many applications such as the training problem of bias support vector machines. We propose a decomposition algorithmic scheme suitable to parallel...
-
-
In this paper we study new preconditioners to be used within the nonlinear conjugate gradient (NCG) method, for large scale unconstrained optimization. The rationale behind our proposal draws inspiration from quasi-Newton updates, and its aim is to possibly approximate in some sense the inverse of...
-
Speaker: Tommaso Colombo
Title: Recurrent Neural Networks: why do LSTM networks perform so well in time series prediction?
(Joint work with: Alberto De Santis, Stefano Lucidi)
Abstract:
Long Short-Term Memory (LSTM)...