Home » Publication » 20132

Dettaglio pubblicazione

2020, 21th World Congress of the International-Federation-of-Automatic-Control (IFAC), Pages -

Asymptotically Optimal Distributed Filtering of Continuous-Time Linear Systems (04b Atto di convegno in volume)

Battilotti S., Cacace F., d'Angelo M., Germani A.

In this paper we prove the following new and unexpected result: it is possible to design a continuous-time distributed filter for linear systems that asymptotically tends at each node to the optimal centralized filter. The result concerns distributed estimation over a connected undirected graph and it only requires to exchange the estimates among adjacent nodes. We exhibit an algorithm containing a consensus term with a parametrized gain and show that when the parameter becomes arbitrarily large the error covariance at each node becomes arbitrarily close to the error covariance of the optimal centralized Kalman filter.
keywords
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma