Enabling a humanoid robot to drive a car requires the development of a set of basic primitive actions. These include walking to the vehicle, manually controlling its commands (e.g., ignition, gas pedal, and steering) and moving with the whole body to ingress/egress the car. We present a sensor-based reactive framework for realizing the central part of the complete task, consisting of driving the car along unknown roads. The proposed framework provides three driving strategies by which a human supervisor can teleoperate the car or give the robot full or partial control of the car. A visual servoing scheme uses features of the road image to provide the reference angle for the steering wheel to drive the car at the center of the road. Simultaneously, a Kalman filter merges optical flow and accelerometer measurements to estimate the car linear velocity and correspondingly compute the gas pedal command for driving at a desired speed. The steering wheel and gas pedal reference are sent to the robot control to achieve the driving task with the humanoid. We present results from a driving experience with a real car and the humanoid robot HRP-2Kai. Part of the framework has been used to perform the driving task at the DARPA Robotics Challenge.
Dettaglio pubblicazione
2017, JOURNAL OF FIELD ROBOTICS, Pages 169-186 (volume: 35)
Autonomous car driving by a humanoid robot (01a Articolo in rivista)
Paolillo Antonio, Gergondet Pierre, Cherubini Andrea, Vendittelli Marilena, Kheddar Abderrahmane
Gruppo di ricerca: Robotics